Answer:
36%
Step-by-step explanation:
9/25 x 4/4 = ?/100
9x4 is 36. 36/100 or 36%
Once you graph the equation, you will notice that the lines are actually the exact same. If they’re the exact same your answer must be...
C. Infinitely Many
![\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ \rule{31em}{0.25pt}\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bratio%20relations%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bccccllll%7D%20%26%5Cstackrel%7Bratio~of~the%7D%7BSides%7D%26%5Cstackrel%7Bratio~of~the%7D%7BAreas%7D%26%5Cstackrel%7Bratio~of~the%7D%7BVolumes%7D%5C%5C%20%26-----%26-----%26-----%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%26%5Ccfrac%7Bs%7D%7Bs%7D%26%5Ccfrac%7Bs%5E2%7D%7Bs%5E2%7D%26%5Ccfrac%7Bs%5E3%7D%7Bs%5E3%7D%20%5Cend%7Barray%7D%5C%5C%5C%5C%20%5Crule%7B31em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7Bs%5E2%7D%7D%7B%5Csqrt%7Bs%5E2%7D%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%20)
![\bf \rule{31em}{0.25pt}\\\\ \cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{\sqrt{98}}{\sqrt{162}}~~ \begin{cases} 98=2\cdot 7\cdot 7\\ \qquad 2\cdot 7^2\\ 162=2\cdot 9\cdot 9\\ \qquad 2\cdot 9^2 \end{cases}\implies \cfrac{s}{s}=\cfrac{\sqrt{2\cdot 7^2}}{\sqrt{2\cdot 9^2}} \\[2em] \cfrac{s}{s}=\cfrac{7\sqrt{2}}{9\sqrt{2}}\implies \cfrac{s}{s}=\cfrac{7}{9}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Crule%7B31em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7Bsmaller%7D%7Blarger%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7B98%7D%7D%7B%5Csqrt%7B162%7D%7D~~%20%5Cbegin%7Bcases%7D%2098%3D2%5Ccdot%207%5Ccdot%207%5C%5C%20%5Cqquad%202%5Ccdot%207%5E2%5C%5C%20162%3D2%5Ccdot%209%5Ccdot%209%5C%5C%20%5Cqquad%202%5Ccdot%209%5E2%20%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7B2%5Ccdot%207%5E2%7D%7D%7B%5Csqrt%7B2%5Ccdot%209%5E2%7D%7D%20%5C%5C%5B2em%5D%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B7%5Csqrt%7B2%7D%7D%7B9%5Csqrt%7B2%7D%7D%5Cimplies%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B7%7D%7B9%7D%20)
bearing in mind that the ratio of the sides, is the same as the ratio of the perimeters.
Answer:
398.21 m
Step-by-step explanation:
The field inside a running track is made of a rectangle that is 84.39 m long and 73 m wide to gather with a half circle at each end.
So, the radius of each half circle will be
m.
Therefore, the total distance around the track i.e perimeter of the area covered by the track will be = 2 × Perimeter of each half circle + 2 × Length of the rectangle.
= Perimeter of full circle + 2 × Length of the rectangle.
= 
= 
= 398.21 m.(Answer)