Answer:
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy = 1/3
Step-by-step explanation: See Annex
Green Theorem establishes:
∫C ( Mdx + Ndy ) = ∫∫R ( δN/dx - δM/dy ) dA
Then
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy
Here
M = 2x + cosy² δM/dy = 1
N = y + e√x δN/dx = 2
δN/dx - δM/dy = 2 - 1 = 1
∫∫(R) dxdy ∫∫ dxdy
Now integration limits ( see Annex)
dy is from x = y² then y = √x to y = x² and for dx
dx is from 0 to 1 then
∫ dy = y | √x ; x² ∫dy = x² - √x
And
∫₀¹ ( x² - √x ) dx = x³/3 - 2/3 √x |₀¹ = 1/3 - 0
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy = 1/3
Answer:
1024
Step-by-step explanation:
Answer:
Step-by-step explanation:
Hello!
(5x+4) /( (x-4)( x+2))
(5x+4)/ (x² +2x -4x -8)=
(5x+4) /( x²-2x -8)
Answer:
Kay sold 67; Allen sold 50
Step-by-step explanation:
Let "a" represent the number of phones that Allen sold.
a + (a+17) = 117 . . . equation used to find the answer
2a = 100 . . . . . . . . subtract 17, collect terms
a = 50 . . . . . . . . . . divide by 2; the number Allen sold
a+17 = 67 . . . . . . . . Kay sold 17 more than Allen
I think it’s b I hope I’m sosososososos sorry if it ain’t