Hey there
____________
The correct answer is :3/5 of the numbers are odd so we just multiply 400 by 3/5:
400 \times \frac{3}{5} = 240
so the best prediction is 240.
_________________
Hope this helps you
Answer:
a) Null and alternative hypothesis:

b) A Type I error is made when a true null hypothesis is rejected. In this case, it would mean a conclusion that the proportion is significantly bigger than 10%, when in fact it is not.
c) The consequences would be that they would be more optimistic than they should about the result of the investment, expecting a proportion of students that is bigger than the true population proportion.
d) A Type II error is made when a false null hypothesis is failed to be rejected. This would mean that, although the proportion is significantly bigger than 10%, there is no enough evidence and it is concluded erroneously that the proportion is not significantly bigger than 10%
e) The consequences would be that the investment may not be made, even when the results would have been more positive than expected from the conclusion of the hypothesis test.
Step-by-step explanation:
a) The hypothesis should be carried to test if the proportion of students that would eat there at least once a week is significantly higher than 10%.
Then, the alternative or spectulative hypothesis will state this claim: that the population proportion is significantly bigger than 10%.
On the contrary, the null hypothesis will state that this proportion is not significantly higher than 10%.
This can be written as:

Hi there
For the first question use the formula of the present value of annuity due
The formula is
Pv=pmt [(1-(1+r/k)^(-n))÷(r/k)]×(1+r/k)
Pv present value?
PMT monthly payment 95
R annual interest rate 0.2379
K compounded monthly 12
N time 7 months
Pv=95×((1−(1+0.2379÷12)^(
−7))÷(0.2379÷12))×(1+0.2379÷12)
=627.45 closed to 637.13 because the question mentioned the minimum monthly payment which is 95 while the exact monthly payment of 637.13
Is 96.47
The second question is the same and easier using the formula of the present value of annuity ordinary
First find the present value by subtracting the amount of down payment From the purchase price
20,640−2,440=18,200
Now find the monthly payment using the formula of
Pv=pmt [(1-(1+r/k)^(-kn))÷(r/k)]
Solve for pmt
PMT=pv÷[(1-(1+r/k)^(-kn))÷(r/k)]
Pv 18200
R 0.104
K 12
N 5 years
PMT=18,200÷((1−(1+0.104÷12)^(
−12×5))÷(0.104÷12))
=390.29
Total paid amount of monthly payment times number of months in a year times the term of the loan to get
390.29×12×5
=23,417.28
Finally how much you paid including down payment
23,417.28+2,440
=25,857.40. ..answer
Good luck!
The common ratio of the given geometric sequence is the number that is multiplied to the first term in order to get the second term. Consequently, this is also the number multiplied to the second term to get the third term. This cycle goes on and on until a certain term is acquired. In this item, the common ratio r is,
r = t⁵/t⁸ = t²/t⁵
The answer, r = t⁻³.
The next three terms are,
n₄ = (t²)(t⁻³) = t⁻¹
n₅ = (t⁻¹)(t⁻³) = t⁻⁴
n₆ = (t⁻⁴)(t⁻³) = t⁻⁷
The answers for the next three terms are as reflected above as n₄, n₅, and n₆, respectively.
Where is the picture? And what is true about it is that they are both letters and in Caps