Answer:
32.9 units
Step-by-step explanation:
p/sinP = r/sinR
p = sinP × r/sinR
p = sin(64) × 21/sin(35)
p = 32.9069916
Answer:
slope= -7/4
Step-by-step explanation:
y2-y1/x2-x1
16-9/-3-1
Answer:

Step-by-step explanation:
The absolute maximum of a continuous function
is where
. Therefore, we must differentiate the function and then set
and
to determine the value of
:







Therefore, when
, the absolute maximum of the function is
.
I've attached a graph to help you visually see this.
Answer:
B) 10g
Step-by-step explanation:
Collect like terms
8g + 4g - 2g = 10g
2 - 2 = 0
10g + 0= 0
Answer:
See below for proof.
Step-by-step explanation:
<u>Given</u>:

<u>First derivative</u>

<u />
<u />
<u />

<u>Second derivative</u>
<u />







<u>Proof</u>



![= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%28x%2B%5Csqrt%7B1%2Bx%5E2%7D%5Cright%29%5Em%5Cleft%5Bm%5E2-%5Cdfrac%7Bmx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%2B%5Cdfrac%7Bmx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D-m%5E2%5Cright%5D)
![= \left(x+\sqrt{1+x^2}\right)^m\left[0]](https://tex.z-dn.net/?f=%3D%20%5Cleft%28x%2B%5Csqrt%7B1%2Bx%5E2%7D%5Cright%29%5Em%5Cleft%5B0%5D)
