Answer:
False
Step-by-step explanation:
I. Multiply the first function by the second one.
f(x)*g(x) = (x^2+3x-4)*(x+4) = x^3 + 3x^2 - 4x + 4x^2 + 12x -16 = x^3 +7x^2 + 8x - 16.
The domain of this new function is the set of all real numbers (R). Other notation: from minus infinity to plus infinity. We came to this conclusion because the new function poses no restrictions; regardless of which x-value you take, you will get the appropriate y-value.
II. f(x)/g(x) = (x^2+3x-4)/(x+4) =
Ask yourself: which two numbers add up to 3 and multiply to -4? It's -1 and 4. Now we can represent f(x) as (x-1)(x+4).
Since we're dividing these 2 brackets by g(x)=x+4, we may now cancel (x+4). All that's left is x-1.
The domain here is the same as in the previous task - it is R.
Answer:
<em>-1</em>
Step-by-step explanation:
1. A water wheel rung’s height as a function of time can be modeled by the equation:
h - 8 = -9 sin6t
(b) Determine the maximum height above the water for a rung.
Given the rung's height modeled by the equation;
h - 8 = -9 sin6t
h(t) = -9sin6t + 8
At maximum height, the velocity of the rung is zero;
dh/dt = 0
dh/dt = -54cos6t
-54cos6t = 0
cos6t = 0/-54
cos6t = 0
6t = cos^-1(0)
6t = 90
t = 90/6
t= 15
Substitute t = 15 into the expression to get the maximum height;
Recall:
h(t) = -9sin6t + 8
h(15) = -9sin6(15) + 8
h(15) = -9sin90 + 8
h(15) = -9(1)+8
h(15) = -9+8
<em>h(15) = -1</em>
<em>hence the maximum height above the water is -1</em>