Answer:     Arithmetic , Divergent 
Step-by-step explanation: 
Given sequence is  
{aₙ} =  {  4 , 10/3  , 8/ 3 , 2 , . . .   }
To check whether the sequence is geometric or not , we divide second term by first term  to find the common ratio . Then we again divide third term by second term to get common ratio . 
The common ratio we get would same , then it is geometric .
          10/3               10            5
r₁  =  -----------  =     ------    =   ------
              4                12             6
         8/3                8                  3                4
r₂=   ----------   =  ----------  *   ------------   =     -----
            10/ 3             3              10                  5
Thus the common ratio are not same . So the sequence is not geometric .
Now we check for arithmetic .
We take difference of second and first term and then difference of third and second term . If it will be same then it is arithmetic . This is called common difference , d .
              10                       -  2
d₁   =    ------     - 4   =       -------
               3                          3
                 8            10             - 2
d₂   =    ------    -   --------    =   ---------
                3             3                 3
Thus the common difference is same .
So the given sequence is arithmetic .
To find whether it is convergent or divergent , we need to write sum of n terms first .
Formula for finding sum of n terms of arithmetic sequence is 
             n
sₙ =     -----  [ 2a + ( n - 1 ) d]
              2 
We have a = 4 , d = - 2/3 .
Plug  in this formula we get 
               n                                                    n                2             2
sₙ  =     ------- [ 2 * 4 + ( n - 1 ) ( -2/3) ]  =     ------ [  8 -   -----  n  +   ------  ]
               2                                                    2                3               3
            n          26              2
sₙ  =   ------  [    ------    -    ------- n  ]
            2           3                3
To check whether it is convergent or divergent , we take limit sₙ approaches to infinity .
                                n       26       2
lim   sₙ   =     lim    { ---   [  ---  -  ------ n ] } =     - ∞
n → ∞           n→∞      2        3       3 
 As the sequence diverge , thus the series is divergent .
Thus given series is arithmetic , divergent .
Second is the  correct option .