1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
3 years ago
7

Simplify (5^3)^6 leaving your answer in index form

Mathematics
2 answers:
Verizon [17]3 years ago
5 0

( {5}^{3} ) ^{6}  =  {5}^{3 \times 6} =  {5}^{18}

Temka [501]3 years ago
5 0

Answer:

5^18.

Step-by-step explanation:

By the law of indices:

(a^b)^c = a^(bc)

So (5^3)^6

= 5^(3*6)

= 5^18.

You might be interested in
Kelly flies a distance of 2,100 miles. The trip takes 4 2/3 hours.
Ede4ka [16]

Answer:

450 miles per hour

Step-by-step explanation:

Kelly flies at a distance of 2,100 miles

The time taken for the trip is 4 2/3 hours

Therefore the rate of speed can be calculated as follows

= 2,100 ÷ 4 2/3

= 2,100 ÷ 14/3

= 2100 × 3/14

= 150 × 3

= 450 miles per hour

8 0
2 years ago
Read 2 more answers
What is the kinetic energy of a 50-kg child running to catch the school bus at 2 m/s
aev [14]

Answer:

100 J

Step-by-step explanation:

The formula for kinetic energy is as follows:

\boxed{KE=  \frac{1}{2} mv²}

where

KE= kinetic energy (J)

m= mass (kg)

v= velocity (m/s)

Given: m= 50 kg, v= 2 m/s

Substituting the given information into the formula:

KE

= ½(50)(2²)

= ½(50)(4)

= 100 J

7 0
2 years ago
Is the square root of two rational numbers
marysya [2.9K]


1 I think...............
7 0
3 years ago
PLS HELPPPP MEEEE I NEED WORK SHOWN TOO
Elanso [62]

The series of operations for each case are listed below:

  1. GCF / GCF / GCF
  2. GCF / Grouping
  3. Quadratic trinomial
  4. GCF / Quadratic trinomial
  5. Difference of squares
  6. Difference of cubes / Quadratic trinomial
  7. Sum of cubes
  8. GCF / Quadratic trinomial
  9. GCF / Difference of squares

<h3>How to applying factor properties to simplify algebraic expressions</h3>

In algebra, factor properties are commonly used to solve certain forms of polynomials in a quick and efficient way and whose effectiveness is sustained on all definitions and theorems known in real algebra. In this problem, we should explain and show what factor properties are used in each case:

Case 1

5 · x · y³ + 10 · x² · y                                             Given

5 · (x · y³ + 2 · x² · y)                                            GCF

5 · x · (y³ + 2 · x · y)                                              GCF

5 · x · y · (y² + 2 · x)                                              GCF

Case 2

6 · z · x + 9 · x + 14 · z + 21                                   Given

3 · x · (z + 3) + 7 · (z + 3)                                       GCF

(3 · x + 7) · (z + 3)                                                  Grouping

Case 3

a² + 2 · a - 63                                                       Given

(a + 9) · (a - 7)                                                       Quadratic trinomial

Case 4

6 · z² + 5 · z - 4                                                     Given

6 · [z² + (5 / 6) · z - 2 / 3]                                      GCF

6 · (z - 1 / 2) · (z + 4 / 3)                                         Quadratic trinomial

Case 5

81 · m² - 25                                                           Given

(9 · m + 5) · (9 · m - 5)                                           Difference of squares

Case 6

8 · x³ - 27                                                               Given

(2 · x - 3) · (4 · x² + 6 · x + 9)                                  Difference of cubes

4 · (2 · x - 3) · [x² + (3 / 2) · x + 9 / 4]                      Quadratic trinomial

Case 7

27 · b³ + 64 · z³                                                      Given

(3 · b + 4 · z) · (9 · b² - 12 · b · z + 16 · z²)               Sum of cubes

Case 8

2 · w³ - 28 · w² + 80 · w                                         Given

2 · w · (w² - 14 · w + 40)                                          GCF

2 · w · (w - 4) · (w - 10)                                             Quadratic trinomial

Case 9

200 · a⁴ - 18 · b⁶                                                     Given

2 · (100 · a⁴ - 9 · b⁶)                                                GCF

2 · (10 · a² + 3 · b³) · (10 · a² - 3 · b³)                       Difference of squares

To learn more on polynomials: brainly.com/question/17822016

#SPJ1

7 0
1 year ago
Find the area of trapezoid JKLM. Round the answer to the nearest tenth.
maksim [4K]

from the diagram, we can see that the height or line perpendicular to the parallel sides is 8.5.

likewise we can see that the parallel sides or "bases" are 24.3 and 9.7, so

\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ h=8.5\\ a=24.3\\ b=9.7 \end{cases}\implies \begin{array}{llll} A=\cfrac{8.5(24.3+9.7)}{2}\\\\ A=\cfrac{8.5(34)}{2}\implies A=144.5~in^2 \end{array}

5 0
2 years ago
Other questions:
  • Use the base of the grassy area to find the approximate area of the circular garden use pi = 3.14 what’s the answer ?
    8·1 answer
  • Which linear inequality is represented by the graph?
    13·2 answers
  • Solve the equations using substitution <br> 7x-2y=3<br> 14x+y=14
    15·1 answer
  • Bailey writes the expression g2 + 14g + 40 to represent the area of a planned school garden in square feet. If g = 5, what are t
    12·1 answer
  • there are 80 red balloons 20 green balloons each package of balloons what is the unit rate in red balloons per green balloons?
    12·1 answer
  • a country club offers membership to it's customers. there is a one-time application fee of $75 and the dues are $25 per month. w
    11·1 answer
  • The first and last terms of a 10-term arithmetic series are listed in the table. What is the sum of the series?
    6·1 answer
  • What is the cost to the NEAREST CENT?
    14·2 answers
  • Can someone please help me (25 points)
    8·1 answer
  • In ΔTUV, the measure of ∠V=90°, the measure of ∠U=85°, and VT = 20 feet. Find the length of TU to the nearest tenth of a foot.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!