Answer:
Number of student tickets = 325
Number of adult tickets = 404
Step-by-step explanation:
Let,
x be the number of student tickets
y be the number of adult tickets
According to given statement;
x+y=729 Eqn 1
3x+5y=2995 Eqn 2
Multiplying Eqn 1 by 3
3(x+y=729)
3x+3y=2187 Eqn 3
Subtracting Eqn 3 from Eqn 2
(3x+5y)-(3x+3y)=2995-2187
3x+5y-3x-3y=808
2y=808
Dividing both sides by 2

Putting y=404 in Eqn 1
x+404=729
x=729-404
x=325
Hence,
Number of student tickets = 325
Number of adult tickets = 404
Answer: 5,4
Step-by-step explanation:
I did the test
Answer:
136.73972
Step-by-step explanation:
A=lw+l(w
2)2+h2+w(l
2)2+h2=6·5.2+6·(5.2
2)2+92+5.2·(6
2)2+92≈136.73972
When you roll a number cube, there is a possibility of a number from 1 to 6 appearing. i.e. 1, 2, 3, 4, 5, or 6 can appear.
The same goes for the second number cube.
The table below presents the possible outcomes of rolling two number cubes with the sum written as exponent.
![\begin{center} \begin{tabular} {| c || c | c | c | c | c | c |} & 1 & 2 & 3 & 4 & 5 & 6 \\ [1ex] 1 & \{1,1\}^2 & \{1,2\}^3 & \{1,3\}^4 & \{1,4\}^5 & \{1,5\}^6 & \{1,6\}^7 \\ 2 & \{2,1\}^3 & \{2,2\}^4 & \{2,3\}^5 & \{2,4\}^6 & \{2,5\}^7 & \{2,6\}^8 \\ 3& \{3,1\}^4 & \{3,2\}^5 & \{3,3\}^6 & \{3,4\}^7 & \{3,5\}^8 & \{3,6\}^9 \\ 4 & \{4,1\}^5 & \{4,2\}^6 & \{4,3\}^7 & \{4,4\}^8 & \{4,5\}^9 & \{4,6\}^{10} \\ \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%20%7B%7C%20c%20%7C%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%7D%0A%26%201%20%26%202%20%26%203%20%26%204%20%26%205%20%26%206%20%5C%5C%20%5B1ex%5D%0A1%20%26%20%5C%7B1%2C1%5C%7D%5E2%20%26%20%5C%7B1%2C2%5C%7D%5E3%20%26%20%5C%7B1%2C3%5C%7D%5E4%20%26%20%5C%7B1%2C4%5C%7D%5E5%20%26%20%5C%7B1%2C5%5C%7D%5E6%20%26%20%5C%7B1%2C6%5C%7D%5E7%20%5C%5C%20%0A2%20%26%20%5C%7B2%2C1%5C%7D%5E3%20%26%20%5C%7B2%2C2%5C%7D%5E4%20%26%20%5C%7B2%2C3%5C%7D%5E5%20%26%20%5C%7B2%2C4%5C%7D%5E6%20%26%20%5C%7B2%2C5%5C%7D%5E7%20%26%20%5C%7B2%2C6%5C%7D%5E8%20%5C%5C%20%0A3%26%20%5C%7B3%2C1%5C%7D%5E4%20%26%20%5C%7B3%2C2%5C%7D%5E5%20%26%20%5C%7B3%2C3%5C%7D%5E6%20%26%20%5C%7B3%2C4%5C%7D%5E7%20%26%20%5C%7B3%2C5%5C%7D%5E8%20%26%20%5C%7B3%2C6%5C%7D%5E9%20%5C%5C%20%0A4%20%26%20%5C%7B4%2C1%5C%7D%5E5%20%26%20%5C%7B4%2C2%5C%7D%5E6%20%26%20%5C%7B4%2C3%5C%7D%5E7%20%26%20%5C%7B4%2C4%5C%7D%5E8%20%26%20%5C%7B4%2C5%5C%7D%5E9%20%26%20%5C%7B4%2C6%5C%7D%5E%7B10%7D%20%5C%5C%20%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)

From the table it can be seen that the sums: 2 and 12 appeared only once and hence will represent the shortest bars if the distribution is represented in a bar chart.
Therefore, the <span>two sums that are represented by the shortest bars on a bar graph of this distribution</span> are 2 and 12.
Answer:
add 5x +2x and then find value of other numbers