1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
3 years ago
7

What is the value of ▲ in the equation shown? 8 x 4 = ( ▲ x 7) - (▲ x 3) = _____

Mathematics
2 answers:
Ilya [14]3 years ago
7 0

Answer:

8

Step-by-step explanation:


aleksandrvk [35]3 years ago
5 0
The answer is 8 because
 8 times 4 = 32
 8 times 7 =56
 8 times 3 =24
 56 minus 24 = 32
You might be interested in
Please please help me!!!
Dafna1 [17]
Answer is 40. A triangle equals 180 so all you do is subtract 65 and 75 from 180 to get your answer.
5 0
3 years ago
This table discluding the 18
Neporo4naja [7]
The table is times 16      
5 0
3 years ago
For each vector field f⃗ (x,y,z), compute the curl of f⃗ and, if possible, find a function f(x,y,z) so that f⃗ =∇f. if no such f
butalik [34]

\vec f(x,y,z)=(2yze^{2xyz}+4z^2\cos(xz^2))\,\vec\imath+2xze^{2xyz}\,\vec\jmath+(2xye^{2xyz}+8xz\cos(xz^2))\,\vec k

Let

\vec f=f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k

The curl is

\nabla\cdot\vec f=(\partial_x\,\vec\imath+\partial_y\,\vec\jmath+\partial_z\,\vec k)\times(f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k)

where \partial_\xi denotes the partial derivative operator with respect to \xi. Recall that

\vec\imath\times\vec\jmath=\vec k

\vec\jmath\times\vec k=\vec i

\vec k\times\vec\imath=\vec\jmath

and that for any two vectors \vec a and \vec b, \vec a\times\vec b=-\vec b\times\vec a, and \vec a\times\vec a=\vec0.

The cross product reduces to

\nabla\times\vec f=(\partial_yf_3-\partial_zf_2)\,\vec\imath+(\partial_xf_3-\partial_zf_1)\,\vec\jmath+(\partial_xf_2-\partial_yf_1)\,\vec k

When you compute the partial derivatives, you'll find that all the components reduce to 0 and

\nabla\times\vec f=\vec0

which means \vec f is indeed conservative and we can find f.

Integrate both sides of

\dfrac{\partial f}{\partial y}=2xze^{2xyz}

with respect to y and

\implies f(x,y,z)=e^{2xyz}+g(x,z)

Differentiate both sides with respect to x and

\dfrac{\partial f}{\partial x}=\dfrac{\partial(e^{2xyz})}{\partial x}+\dfrac{\partial g}{\partial x}

2yze^{2xyz}+4z^2\cos(xz^2)=2yze^{2xyz}+\dfrac{\partial g}{\partial x}

4z^2\cos(xz^2)=\dfrac{\partial g}{\partial x}

\implies g(x,z)=4\sin(xz^2)+h(z)

Now

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+h(z)

and differentiating with respect to z gives

\dfrac{\partial f}{\partial z}=\dfrac{\partial(e^{2xyz}+4\sin(xz^2))}{\partial z}+\dfrac{\mathrm dh}{\mathrm dz}

2xye^{2xyz}+8xz\cos(xz^2)=2xye^{2xyz}+8xz\cos(xz^2)+\dfrac{\mathrm dh}{\mathrm dz}

\dfrac{\mathrm dh}{\mathrm dz}=0

\implies h(z)=C

for some constant C. So

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+C

3 0
4 years ago
What is the volume of a cone with a diameter of 30 feet and a height of 60 feet? Use 3.14 for π.
AysviL [449]

Answer:

14130 ft^3

Step-by-step explanation:

The formula for the volume of a cone of radius r and height h is

V = (1/3)*pi*r^2*h.

Here, V = (1/3)(3.14)(15 ft)^2*(60 ft) = 20*3.14*225 ft^3 = 14130 ft^3


3 0
3 years ago
Jack,sally, and joe all work in a bookstore.jack sold 126 books.joe 1/2 as many books as jack,and sally sold 1/3 as many books a
Darina [25.2K]

Sally sold 2302323 books!

7 0
4 years ago
Other questions:
  • 7(5 - 6x) - 4x =-8 + 35 show work
    10·1 answer
  • A square has an area of 289 sq cm. what is the length of one side
    8·1 answer
  • [2 -6] - [-2 4] please help
    5·2 answers
  • 24% is 7kg.What is 40%?
    9·1 answer
  • Can someone hep me with this
    7·2 answers
  • PLEASE HELP ME SOLVE THIS ILL GIVE BRAINLIST ❗️
    9·1 answer
  • Does this scatter plot show a positive trend a negative trend or no trend​
    7·1 answer
  • HEEELP ASAP PLEASEEEEEEEE<br><br> Find the slope of the curve f(x) = 2x^2.<br><br> 2x<br> x<br> 4x
    8·1 answer
  • B. What is 39% of 200?
    10·2 answers
  • When a constant force acts
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!