Answer:
case a)
----> open up
case b)
----> open down
case c)
----> open left
case d)
----> open right
Step-by-step explanation:
we know that
1) The general equation of a vertical parabola is equal to

where
a is a coefficient
(h,k) is the vertex
If a>0 ----> the parabola open upward and the vertex is a minimum
If a<0 ----> the parabola open downward and the vertex is a maximum
2) The general equation of a horizontal parabola is equal to

where
a is a coefficient
(h,k) is the vertex
If a>0 ----> the parabola open to the right
If a<0 ----> the parabola open to the left
Verify each case
case a) we have

so


so

therefore
The parabola open up
case b) we have

so



therefore
The parabola open down
case c) we have

so



therefore
The parabola open to the left
case d) we have

so



therefore
The parabola open to the right
"color the piece according to your color chart." Do you have that? If you don't, I wouldn't worry, you still did all the work and got all the answers, so your teacher should be fine with it.
Answer:
I wish I could help but I'm not sure
5’3 is 63 inches since her brother is 1/3 larger so 63/3= 21 inches
<u>Explanation:</u>
a) First, note that the Type I error refers to a situation where the null hypothesis is rejected when it is actually true. Hence, her null hypothesis would be H0: mean daily demand of her clothes in this region should be greater than or equal to 100.
The implication of Type I error in this case is that Mary <u>rejects</u> that the mean daily demand of her clothes in this region is greater than or equal to 100 when it is actually true.
b) While, the Type II error, in this case, is a situation where Mary accepts the null hypothesis when it is actually false. That is, Mary <u>accepts</u> that the mean daily demand of her clothes in this region is greater than or equal to 100 when it is actually false.
c) The Type I error would be important to Mary because it shows that she'll be having a greater demand (which = more sales) for her products despite erroneously thinking otherwise.