1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
4 years ago
8

A preschool has Campbell's Chunky Beef soup, which contains 2.5 g of fat and 15 mg of cholesterol per serving (cup), and Campbel

l's Chunky Sirloin Burger soup, which contains 7 g of fat and 15 mg of cholesterol per serving. By combining the soups, it is possible to get 20 servings of soup that will have 113 g of fat and 300 mg of cholesterol. How many cups of each soup should be used? beef cups burger cups
Mathematics
1 answer:
Nuetrik [128]4 years ago
7 0

Answer:

b =14 bowls of CCSB soup.

a= 6 bowls of CCB soup

Step-by-step explanation:

1 CCB contains = 2.5a+15a

1 CCSB contains 7b +15b

On combining 20 servings of 113c +300c of Soups.

So,

2.5a+7b = 113,   (multiply by 6)...............A

15a+42b = 678  .....................1

15a+15b = 300 ....................2

Solving , 1 and 2 equation

we get

b =14 bowls of CCSB soup.

putting b value in equation A we get

a= 6 bowls of CCB soup

You might be interested in
Free points everyone<br><br>45 + 45 + 90​
klasskru [66]
<h2>Answer:</h2>

<u><em>Thank you for the free points!</em></u>

<u><em>45 + 45 = 90</em></u>

<u><em>45 + 45 + 90 = 180</em></u>

<h2>Step-by-step explanation:</h2>

<em>Have a good one!</em>

<h2>☜(ˆ▿ˆc)</h2>
8 0
3 years ago
Read 2 more answers
How does a digit in the 10,000s place compare to a digit in the thousands place?
Delvig [45]
While a digit in the thousands place has a value 1,000 times the value of the digit. So to compare you can do 10,000 / 1,000 = 10, which means that a digit in the ten thousand place values ten times what the same digit values is it is the thousand place.
4 0
3 years ago
PLEASE HELP!! good luck will be brought back to you ❤️Which statement about the triangles is true?
vekshin1
I think it is the first one
3 0
3 years ago
Which of the following tables represents a function? (PLEASE HELP!)
frez [133]
Last one is your answer.
X cannot be repeated, but y can
3 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
Other questions:
  • At an amusement park,Benny wants to ride a roller coaster that costs 17 tickets,a bumper car that cost 15 tickets,and a merry go
    5·1 answer
  • What integers are plotted on the number line below?
    11·2 answers
  • How to find the length of a major arc
    5·1 answer
  • Sam ate a total of 13 hotdogs. He ate 2 hotdogs every 4 minutes. How many minutes did it take for Sam to finish all 13 hotdogs?
    13·1 answer
  • As a laboratory assistant, you measure chemicals using the metric system. For your current research, you need to measure out 45
    5·2 answers
  • *PLEASE NEED HELP ASAP!!* URGENT
    8·2 answers
  • Find the slope of the line that passes through the points (2,-10) and (-4,2).
    8·2 answers
  • Which of the following are valid names for the given triangle? Check all that apply.
    14·2 answers
  • Find the surface area and volume of the figure. Round to the nearest tenth.
    14·1 answer
  • Solve for X -6.9&lt;8.1-1.5x
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!