By applying the formulas of present and future values of annuity we can solve this problem. In this mortgage problem, first we have to find loan amount after the down payment. It is 699,000 - 699,000 * 0.2 = 559,200$. We have to set it as PV (Present Value) of annuity. Using the PV formula
, we first find A, which is an annual payment. Exact calculation with mortgage calculator gives us A = 33,866.56$. After finding it, plugging this number into FV (Future Value) formula
, we find the value of the future value and it is 1,185,329.66$. And the total financial charge is 1,185,329.66 - 559,200 = 626,129.66$
For these problems, the this number is this percent of what number ones, turn the percent into a decimal.
Do this by moving the decimal two places to the left.
0.25 is the decimal.
Now divide the whole number by the decimal.
60/0.25=240
60 is 25% of 240
Answer:
65
Step-by-step explanation:
Answer:
1.15%
Step-by-step explanation:
To get the probability of m independent events you multiply the individual probability of each event. In this case we have m independent events, each one with the same probability, therefore:


This is a particlar scenario of binomial distribution problem. So the binomial distribution questions are about the number of success of m independent events, where every individual event has the same p probability. In the question we have 20 events and each event has a probability of 80%. The binomial distribution formula is:

n is the number of events
k is the number of success
p is the probability of each individual event
is the binomial coefficient
the binomial coefficient allows to find the subsets of k elements in a set of n elements. In this case there is only one subset possible since the only way to get 20 of 20 correct questions is to getting right all questions (for getting 19 of 20 questions there are many ways, for example getting the first question wrong and all the other questions right, or getting second questions wrong and all the other questions right, etc).

therefore, for this questions we have:
