Answer:
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care</u></em><em><u> </u></em><em><u>and </u></em><em><u>may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>
you know
its rly hard to actually answer one of these
thx man i appreciate it
Answer:
18 weeks
Step-by-step explanation:
In this question, we are asked to use an equation to show the number of weeks it took Hugo who received a certain amount in his birthday and continually saved a certain amount before he could gather a certain amount of money.
In this question, we understand that Hugo wants to buy a printer that costs $460. Fortunately, he had his birthday and he received $100 bucks. Now, let’s say the number of weeks he had to save for is w and he saves 20 per week. This means the total amount he hit from his savings would be 20w
Mathematically, we can use the equation below to model this scenario;
100 + 20(w) = 460
20w = 460 - 100
20w = 360
w = 360/20
w = 18 weeks
Answer:
a
Step-by-step explanation:
Answer:
a. see attached
b. H(t) = 12 -10cos(πt/10)
c. H(16) ≈ 8.91 m
Step-by-step explanation:
<h3>a.</h3>
The cosine function has its extreme (positive) value when its argument is 0, so we like to use that function for circular motion problems that have an extreme value at t=0. The midline of the function needs to be adjusted upward from 0 to a value that is 2 m more than the 10 m radius. The amplitude of the function will be the 10 m radius. The period of the function is 20 seconds, so the cosine function will be scaled so that one full period is completed at t=20. That is, the argument of the cosine will be 2π(t/20) = πt/10.
The function describing the height will be ...
H(t) = 12 -10cos(πt/10)
The graph of it is attached.
__
<h3>b. </h3>
See part a.
__
<h3>c.</h3>
The wheel will reach the top of its travel after 1/2 of its period, or t=10. Then 6 seconds later is t=16.
H(16) = 12 -10cos(π(16/10) = 12 -10cos(1.6π) ≈ 12 -10(0.309017) ≈ 8.90983
The height of the rider 6 seconds after passing the top will be about 8.91 m.