1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
12

Which of the following statements is true about the graph of the equation 2y-3x=-4 in the xy-plane? Explain step by step how you

achieved your answer.
A) It has a negative slope and a positive y-intercept.
B) It has a negative slope and a negative y-intercept.
C) It has a positive slope and a positive y-intercept.
D) It has a positive slope and a negative y-intercept.
Mathematics
1 answer:
sertanlavr [38]3 years ago
5 0

D. It has a positive slope and negative y- intercept.

Step-by-step explanation:

2y -3x = -4

We can rewrite the equation in the form of y = mx+ b where m is the slope and b is the y - intercept as,

2y = 3x- 4

Dividing all the terms by 2, we will get,

2y/2 = 3x/2 - 4/2

y = (3/2)x -2

So the slope is 3/2 which is positive and y-intercept is -2 which is negative.

You might be interested in
How much interest will be paid in 2 years for a loan of $1500 at 8.25% simple interest ?
uysha [10]
8.25\%=0.0825\\\\0.0825\cdot\$1500=\$123.75-after\ the\ one\ year\\\\\$1500+123.75\$=\$1623.75\\\\0.0825\cdot\$1623.75=\$133.96-after\ the\ second\ year\\\\\$123.75+\$133.96=\$257.71-answer
3 0
3 years ago
Jessica is selling books during the summer to earn money for college. She
labwork [276]

Answer:

D

Step-by-step explanation:

I am confused but thats my guess

4 0
2 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
Is 1500 ml greater than less than or equal to 1.5 l?
Aleks [24]

Is 1500 ml greater than less than or equal to 1.5 l is equal.

4 0
3 years ago
A group of students want to make a flag. Someone want it to be a rectangle, some a kite, and others a rhombus. Can the crew make
g100num [7]

Answer:

yes the crew can make a flag using all three shapes

6 0
2 years ago
Other questions:
  • Which property is shown in the following statement? 7 · 1 = 7 identity property of multiplication commutative property of multip
    7·2 answers
  • How to solve this equation of the missing sides of the triangle
    11·1 answer
  • Can somebody explain what I have to do to find the value of x?<br> (In the pic)
    11·2 answers
  • Find the x and y intercepts, show all work.<br><br> 6x+3y=12
    6·1 answer
  • -9x2y5 is polynomial or monomial or binomial or trinomial or polynomial
    14·1 answer
  • Find missing angel<br> X=???
    11·1 answer
  • Find the slope between the two points: (20, 8), (9, 16)
    11·2 answers
  • -4,-21,-38 common difference
    10·1 answer
  • Solve for x. Your answer must be simplified. x-24&gt;_9
    5·1 answer
  • F(x)=3x^4-2x^3-12x^2-x; k=4
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!