Answer:
a) 98.522
b) 0.881
c) The correlation coefficient and co-variance shows that there is positive association between marks and study time. The correlation coefficient suggest that there is strong positive association between marks and study time.
Step-by-step explanation:
a.
As the mentioned in the given instruction the co-variance is first computed in excel by using only add/Sum, subtract, multiply, divide functions.
Marks y Time spent x y-ybar x-xbar (y-ybar)(x-xbar)
77 40 5.1 1.3 6.63
63 42 -8.9 3.3 -29.37
79 37 7.1 -1.7 -12.07
86 47 14.1 8.3 117.03
51 25 -20.9 -13.7 286.33
78 44 6.1 5.3 32.33
83 41 11.1 2.3 25.53
90 48 18.1 9.3 168.33
65 35 -6.9 -3.7 25.53
47 28 -24.9 -10.7 266.43
![Covariance=\frac{sum[(y-ybar)(x-xbar)]}{n-1}](https://tex.z-dn.net/?f=Covariance%3D%5Cfrac%7Bsum%5B%28y-ybar%29%28x-xbar%29%5D%7D%7Bn-1%7D)
Co-variance=886.7/(10-1)
Co-variance=886.7/9
Co-variance=98.5222
The co-variance computed using excel function COVARIANCE.S(B1:B11,A1:A11) where B1:B11 contains Time x column and A1:A11 contains Marks y column. The resulted co-variance is 98.52222.
b)
The correlation coefficient is computed as
![Correlation coefficient=r=\frac{sum[(y-ybar)(x-xbar)]}{\sqrt{sum[(x-xbar)]^2sum[(y-ybar)]^2} }](https://tex.z-dn.net/?f=Correlation%20coefficient%3Dr%3D%5Cfrac%7Bsum%5B%28y-ybar%29%28x-xbar%29%5D%7D%7B%5Csqrt%7Bsum%5B%28x-xbar%29%5D%5E2sum%5B%28y-ybar%29%5D%5E2%7D%20%7D)
(y-ybar)^2 (x-xbar)^2
26.01 1.69
79.21 10.89
50.41 2.89
198.81 68.89
436.81 187.69
37.21 28.09
123.21 5.29
327.61 86.49
47.61 13.69
620.01 114.49
sum(y-ybar)^2=1946.9
sum(x-xbar)^2=520.1




The correlation coefficient computed using excel function CORREL(A1:A11,B1:B11) where B1:B11 contains Time x column and A1:A11 contains Marks y column. The resulted correlation coefficient is 0.881.
c)
The correlation coefficient and co-variance shows that there is positive association between marks and study time. The correlation coefficient suggest that there is strong positive association between marks and study time. It means that as the study time increases the marks of student also increases and if the study time decreases the marks of student also decreases.
The excel file is attached on which all the related work is done.
Answer:

Step-by-step explanation:
Given
Normal Hour = 32 hours
Overtime = Hours above 32
Rate for Overtime = 1.4 times normal rate
Earnings = $535.62
Required
Determine the normal hour pay
First, we need to determine the hours worked overtime.
This is:


The equation that binds all the parameters is:

This gives:



Solve for r


Answer to written question:
3x + 10x + 7x = 180
Combine like terms
20x = 180
Divide by 20
x = 9
Smallest angle 3x = 3*9 = 27 degrees
Answer to question in picture:
30/6x-2 = 36/5x + 13
Cross multiply
30(5x + 13) = 36(6x-2)
Distribute
150x + 390 = 216x - 72
Subtract 150x
390 = 66x - 72
Add 72
462 = 66x
Divide by 66
x = 7