The Nucleus is sort of like the "brain" of a cell.
Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type
Explanation:
Having filtered out small essential molecules from the blood - the kidneys must reabsorb the molecules which are needed, while allowing those molecules which are not needed to pass out in the urine. Therefore, the kidneys selectively reabsorb only those molecules which the body needs back in the bloodstream.
Answer:
Cut open the plasmid and "paste" in the gene. This process relies on restriction enzymes (which cut DNA) and DNA ligase (which joins DNA).
Insert the plasmid into bacteria. Use antibiotic selection to identify the bacteria that took up the plasmid.
Grow up lots of plasmid-carrying bacteria and use them as "factories" to make the protein. Harvest the protein from the bacteria and purify it.
Explanation:
<span>the deliberate modification of the characteristics of an organism by manipulating its genetic material.</span>