Answer:
![\displaystyle\frac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
Step-by-step explanation:
It can work well to identify 4th powers under the radical, then remove them.
![\displaystyle\sqrt[4]{\frac{24x^6y}{128x^4y^5}}=\sqrt[4]{\frac{3x^2}{16y^4}}=\sqrt[4]{\frac{3x^2}{(2y)^4}}\\\\=\frac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csqrt%5B4%5D%7B%5Cfrac%7B24x%5E6y%7D%7B128x%5E4y%5E5%7D%7D%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E2%7D%7B16y%5E4%7D%7D%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E2%7D%7B%282y%29%5E4%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
_____
The applicable rules of exponents are ...
1/a^b = a^-b
(a^b)(a^c) = a^(b+c)
The x-factors simplify as ...
x^6/x^4 = x^(6-4) = x^2
The y-factors simplify as ...
y/y^5 = 1/y^(5-1) = 1/y^4
The constant factors simplify in the usual way:
24/128 = (8·3)/(8·16) = 3/16
Answer:
Part 1) 
Part 2) 
Part 3) 
Part 4) 
Part 5) 
Part 6) 
Step-by-step explanation:
Part 1) we know that
The shaded region is equal to the area of the complete rectangle minus the area of the interior rectangle
The area of rectangle is equal to

where
b is the base of rectangle
h is the height of rectangle
so



Part 2) we know that
The shaded region is equal to the area of the complete rectangle minus the area of the interior square
The area of square is equal to

where
b is the length side of the square
so



Part 3) we know that
The area of the shaded region is equal to the area of four rectangles plus the area of one square
so



Part 4) we know that
The shaded region is equal to the area of the complete square minus the area of the interior square
so



Part 5) we know that
The area of the shaded region is equal to the area of triangle minus the area of rectangle
The area of triangle is equal to

where
b is the base of triangle
h is the height of triangle
so



Part 6) we know that
The area of the shaded region is equal to the area of the circle minus the area of rectangle
The area of the circle is equal to

where
r is the radius of the circle
so


Answer:
m(arc FE) = 166°
Step-by-step explanation:
By theorem of intersecting chords and tangent of a circle,
Measure of the angle formed by a chord and tangent intersecting on the circle measure the half of the intercepted arc.
m(∠GFE) = 
83° = 
m(arc FE) = 166°
Answer:
1st picture: (0,4)
The lines intersect at point (0,4).
2nd picture: Graph D
2x ≥ y - 1
2x - 5y ≤ 10
Set these inequalities up in standard form.
y ≤ 2x + 1
-5y ≤ 10 - 2x → y ≥ -2 + 2/5x → y ≥ 2/5x - 2
When you divide by a negative number, you switch the inequality sign.
Now you have:
y ≤ 2x + 1
y ≥ 2/5x - 2
Looking at the graphs, you first want to find the lines that intersect the y-axis at (0, 1) and (0, -2).
In this case, it is all of them.
Next, you would look at the shaded regions.
The first inequality says the values are less than or equal to. So you look for a shaded region below a line. The second inequality says the values are greater than or equal to. So you look for a shaded region above a line.
That would mean Graph B or D.
Then you look at the specific lines. You can see that the lower line is y ≥ 2/5x - 2. You need a shaded region above this line. You can see the above line is y ≤ 2x + 1. You need a shaded region below this line. That is Graph D.
Answer:
Scalene triangle
Step-by-step explanation: