Answer:
Verified
Step-by-step explanation:
Let the 2x2 matrix A be in the form of:
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
Where det(A) = ad - bc # 0 so A is nonsingular:
Then the transposed version of A is
![A^T = \left[\begin{array}{cc}a&c\\b&d\end{array}\right]](https://tex.z-dn.net/?f=A%5ET%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26c%5C%5Cb%26d%5Cend%7Barray%7D%5Cright%5D)
Then the inverted version of transposed A is
![(A^T)^{-1} = \frac{1}{ad - cb} \left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5ET%29%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20cb%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
The inverted version of A is:
![A^{-1} = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-b\\-c&d\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-b%5C%5C-c%26d%5Cend%7Barray%7D%5Cright%5D)
The transposed version of inverted A is:
![(A^{-1})^T = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5E%7B-1%7D%29%5ET%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
We can see that

So this theorem is true for 2 x 2 matrices
Shortest side (a) = 58
middle side (b) = 64
longest side (c) = 77
the 3 sides a + b + c = 199
b = a + 6
c = a + 19
substitute your new values for b & c into your original formula, so:
a + (a+6) + (a+19) = 199
3a + 25 = 199
3a = 174
a = 58
then substitute 58 into your b & c formulas to figure out the rest
b = a + 6 = 58 + 6 = 64
c = a + 19 = 58 + 19 = 77
It seems that you missed the essential details for this question, but anyway, I have found the complete question. So given that angles m<A=32 and m<B=55, let us find first for the measure of angle c. So m<C= <span>180 - 32-55 = 93, so it is 93. Based on these measurements, Triangle ABC is an obtuse triangle. By definition, an obtuse triangle is a triangle in which one of its angles is obtuse or which measures more than 90 degrees. Hope this answer helps.</span><span>
</span>
Answer:0.5, 0.5
Step-by-step explanation:
Given

Also, A and B are independent events. So, we can write that


So, the two most possible value of
are 