The <span><u>principle of exception</u> is the managerial principle that states that </span><span>control is enhanced by concentrating on the exceptions to, or significant deviations from, the expected result or standard.
This also refers to the fact that only what is important in a budget or a plan is shown to the manager, while the rest is excluded. </span>
B) 2/5
I think, if a and b are the same (coz then they would both equal 0.2)
Answer:
You always do the X-axis first. Hope this helps! :)
<h3>
CloutAnswers</h3>
If "a" and "b" are two values of x-coordinate, and "m" is the midpoint between them, it means the distance from one end to the midpoint is the same as the distance from the midpoint to the other end
... a-m = m-b
When we add m+b to this equation, we get
... a+b = 2m
Solving for m gives
... m = (a+b)/2
This applies to y-coordinates as well. So ...
... The midpoint between (x1, y1) and (x2, y2) is ((x1+x2)/2, (y1+y2)/2)
_____
Jennifer had (x1, y1) = (-4, 10) and (x2, y2) = (-2, 6). So her calculation would be
... midpoint = ((-4-2)/2, (10+6)/2) = (-6/2, 16/2) = (-3, 8)
Brandon had (x1, y1) = (9, -4) and (x2, y2) = (-12, 8). So his calculation would be
... midpoint = ((9-12)/2, (-4+8)/2) = (-3/2, 4/2) = (-1.5, 2)
The given expression 2^8 * 8^2 * 4^-4 can be written in the exponential form 2^n as 2^6.
<h3>What are exponential forms?</h3>
The exponential form is a more convenient way to write repetitive multiplication of the same integer by using the base and its exponents.
<u>For example:</u>
If we have a*a*a*a, it can be written in exponential form as:
=a^4
where
- a is the base, and
- 4 is the power.
The power in this format reflects the number of times we multiply the base by itself. The exponent is also known as the index or power.
From the information given:
We can write 2^8 * 8^2 * 4^-4 in form of 2^n as follows:
Therefore, we can conclude that by using the exponential form, the given expression 2^8 * 8^2 * 4^-4 in the form 2^n is 2^6.
Learn more about exponential forms here:
brainly.com/question/8844911
#SPJ1