1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
5

What are two methods for proving the two triangles

Mathematics
1 answer:
Feliz [49]3 years ago
5 0
Congruence method: AAA, ASA, SSS,SAS,HL(For right triangle).

For coordinates proof, if you are proficient with vector, then it will be easier to calculate the angles, otherwise, you should know the distance formula and calculate the length of the vertices.
You might be interested in
PLSS HELP NO BOTS!!!!
ad-work [718]

Answer:

60 degrees

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Please help &lt; &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;33333333 TYY<br> -20 -8 + (-12)
Montano1993 [528]

Answer:

-30

Step-by-step explanation:

-20-8=-28

-28-12

=-30

5 0
2 years ago
24% of 398 what is it
olganol [36]

Answer:

24 percent (calculated percentage %) of number 398,

Answer: 95.52

Step-by-step explanation:

hope it helps

6 0
3 years ago
Read 2 more answers
Write each percent as a fraction<br> 10. 56<br> 564%
torisob [31]
10.56 as a fraction is 264 / 25
564% as a fraction is 141/250
3 0
3 years ago
Read 2 more answers
Find the imaginary part of\[(\cos12^\circ+i\sin12^\circ+\cos48^\circ+i\sin48^\circ)^6.\]
iren [92.7K]

Answer:

The imaginary part is 0

Step-by-step explanation:

The number given is:

x=(\cos(12)+i\sin(12)+ \cos(48)+ i\sin(48))^6

First, we can expand this power using the binomial theorem:

(a+b)^k=\sum_{j=0}^{k}\binom{k}{j}a^{k-j}b^{j}

After that, we can apply De Moivre's theorem to expand each summand:(\cos(a)+i\sin(a))^k=\cos(ka)+i\sin(ka)

The final step is to find the common factor of i in the last expansion. Now:

x^6=((\cos(12)+i\sin(12))+(\cos(48)+ i\sin(48)))^6

=\binom{6}{0}(\cos(12)+i\sin(12))^6(\cos(48)+ i\sin(48))^0+\binom{6}{1}(\cos(12)+i\sin(12))^5(\cos(48)+ i\sin(48))^1+\binom{6}{2}(\cos(12)+i\sin(12))^4(\cos(48)+ i\sin(48))^2+\binom{6}{3}(\cos(12)+i\sin(12))^3(\cos(48)+ i\sin(48))^3+\binom{6}{4}(\cos(12)+i\sin(12))^2(\cos(48)+ i\sin(48))^4+\binom{6}{5}(\cos(12)+i\sin(12))^1(\cos(48)+ i\sin(48))^5+\binom{6}{6}(\cos(12)+i\sin(12))^0(\cos(48)+ i\sin(48))^6

=(\cos(72)+i\sin(72))+6(\cos(60)+i\sin(60))(\cos(48)+ i\sin(48))+15(\cos(48)+i\sin(48))(\cos(96)+ i\sin(96))+20(\cos(36)+i\sin(36))(\cos(144)+ i\sin(144))+15(\cos(24)+i\sin(24))(\cos(192)+ i\sin(192))+6(\cos(12)+i\sin(12))(\cos(240)+ i\sin(240))+(\cos(288)+ i\sin(288))

The last part is to multiply these factors and extract the imaginary part. This computation gives:

Re x^6=\cos 72+6cos 60\cos 48-6\sin 60\sin 48+15\cos 96\cos 48-15\sin 96\sin 48+20\cos 36\cos 144-20\sin 36\sin 144+15\cos 24\cos 192-15\sin 24\sin 192+6\cos 12\cos 240-6\sin 12\sin 240+\cos 288

Im x^6=\sin 72+6cos 60\sin 48+6\sin 60\cos 48+15\cos 96\sin 48+15\sin 96\cos 48+20\cos 36\sin 144+20\sin 36\cos 144+15\cos 24\sin 192+15\sin 24\cos 192+6\cos 12\sin 240+6\sin 12\cos 240+\sin 288

(It is not necessary to do a lengthy computation: the summands of the imaginary part are the products sin(a)cos(b) and cos(a)sin(b) as they involve exactly one i factor)

A calculator simplifies the imaginary part Im(x⁶) to 0

4 0
3 years ago
Other questions:
  • Simplify the expression: (k − 4)(4)
    6·2 answers
  • Find the exact volume of a waffle ice cream cone with 3-in
    15·1 answer
  • Dan uses a remote control to make his drone take off from the ground. Function h represents the height, in feet, of the drone t
    10·2 answers
  • The perimeter of rectangular is 54 inches Its length is two times its width
    13·1 answer
  • 1. 8q+ 6 ; q = 2
    10·1 answer
  • Find the height of an equilateral triangle with sides of length 12
    10·2 answers
  • USATestprep, LLC -...
    9·1 answer
  • HELP ASAP HELP I NEED HELP WILL MARK BRAINLIST
    15·2 answers
  • 19.
    12·1 answer
  • Pls help!!!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!