Determine whether the point 1,5 is a solution to the system of inequalities below y>3x , y>/2x+1
Mi hermano ha ganado un dinero <em>devengado</em> de 8835 pesos en 15 días.
En esta pregunta debemos determinar el dinero <em>devengado</em> por un período de 15 días a partir de una tasa diaria <em>constante</em>. Esa cantidad es igual al producto de la tasa diaria <em>constante</em>, en pesos por día, y el número de días <em>trabajados</em>, en días:


Mi hermano ha ganado un dinero <em>devengado</em> de 8835 pesos en 15 días.
Para aprender más sobre álgebra y aritmética, invitamos cordialmente a ver esta pregunta: brainly.com/question/953809
Answer:
and
in interval notation.
Step-by-step explanation:
We have been given a compound inequality
. We are supposed to find the solution of our given inequality.
First of all, we will solve both inequalities separately, then we will combine both solution merging overlapping intervals.



Dividing by negative number, flip the inequality sign:





Dividing by negative number, flip the inequality sign:


Upon merging both intervals, we will get:

Therefore, the solution for our given inequality would be
and
in interval notation.
Answer:
Step-by-step explanation:
<u>Given function</u>
The points (-1, 1/6) and (1, 2/3) lie on the graph
<u>Substitute the values of x and y to get the system of equations:</u>
- 1/6 = c*a^(-1) ⇒ 1/6 = c/a ⇒ a = 6c
- 2/3 = c*a^1 ⇒ 2/3 = ac
<u>Substitute a and solve for c:</u>
- 2/3 = 6c*c
- 1/9 = c²
- c = √1/9
- c = 1/3
<u>Find a:</u>
<u>The equation of the function:</u>