Answer:
40
Step-by-step explanation:
25.8%
First, determine how many standard deviations from the norm that 3 tons are. So:
(3 - 2.43) / 0.88 = 0.57/0.88 = 0.647727273
So 3 tons would be 0.647727273 deviations from the norm. Now using a standard normal table, lookup the value 0.65 (the table I'm using has z-values to only 2 decimal places, so I rounded the z-value I got from 0.647727273 to 0.65). The value I got is 0.24215. Now this value is the probability of getting a value between the mean and the z-score. What I want is the probability of getting that z-score and anything higher. So subtract the value from 0.5, so 0.5 - 0.24215 = 0.25785 = 25.785%
So the probability that more than 3 tons will be dumped in a week is 25.8%
Ratio of volume is a cubed: b cubed
Answer:
1. Not accounting for the difference in the base of the exponent when applying the quotient rule.
2. Not subtracting the exponents of the denominator from the exponent of the numerator when applying the quotient rule.