"<span>How much did your classmates typically spend on music downloads last year?" is a statistical question, and the units would </span>be both the number of students and how many downloads each individual bought.
<u><em>1</em><em>s</em><em>t</em><em> </em><em>photo....</em></u>
<em>Yes</em>
<em>Explanation</em>
All when divided becomes 1/3 , so it is proportional...
<em>Pls </em><em>mark</em><em> </em><em>brainliest</em>
<u><em>2</em><em>n</em><em>d</em><em> </em><em>photo</em><em>.</em><em>.</em><em>.</em><em>.</em></u>
Yes<em> </em>
<em>Explai</em><em>n</em><em>ation</em>
<em>Also </em><em>when </em><em>divided </em><em>becomes </em><em>1</em><em>/</em><em>3</em><em>.</em><em>.</em><em>.</em><em> </em><em>Same </em><em>proportional</em>
Answer: An adult’s ticket costs $9 while a children’s ticket costs $5.
Step-by-step explanation:
1). 2x + 3y = 33
2). 5x + 2y = 55
3). I’m going to use substitution.
Isolate a variable (x):
2x + 3y = 33
2x = -3y + 33
X = (-3y + 33)/2
X = -3/2y + 33/2
Substitute and solve for y:
5x + 2y = 55
5(-3/2y + 33/2) + 2y = 55
-15/2y + 165/2 + 2y = 55
-11/2y = -55/2
Y = 5 <— children’s ticket.
Solve for x:
2x + 3y = 33
2x + 3(5) = 33
2x + 15 = 33
2x = 18
X = 9 <— adult’s ticket.
Check:
5x + 2y = 55
5(9) + 2(5) = 55
45 + 10 = 55
55 = 55
2x + 3y = 33
2(9) + 3(5) = 33
18 + 15 = 33
33 = 33
The only difference I see is that he would have money so...