At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)
• Expand (2a + b)²:
(2a + b)²
= (2a + b) · (2a + b)
Multiply out the brackets by applying the distributive property of multiplication:
= (2a + b) · 2a + (2a + b) · b
= 2a · 2a + b · 2a + 2a · b + b · b
= 2²a² + 2ab + 2ab + b²
Now, group like terms together, and you get
= 2²a² + 4ab + b²
= 4a² + 4ab + b² <——— expanded form (this is the answer).
I hope this helps. =)
Tags: <em>special product square of a sum algebra</em>
The dimension of the document is 35 inches by 40 inches.
It is redrawn at a scale of 1 1/2 or 3/2 or 1.5
The dimension will be:
35 * 1.5 = 52.5 in
40 * 1.5 = 60 in
Then redrawn again at 1/4 or 0.25
52.5 * 0.25 = 13.125 in
60 * 0.25 = 15 in
So the final dimensions of the drawing is 13.125 in by 15 in
I’m going to say the top one it seems like that would be correct
Answer:
Review how to find the percent of an amount to find the percent of an amount or of a whole we write
Step-by-step explanation: