The answer is it’s 5 pie over 4
Answer:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's find the answer.
Because we have 3 equations and 3 variables (x1, x2, x3) a 3x3 matrix (A) can be constructed by using their respectively coefficients.
Equations:
Eq. 1 : x1 + 2x2 + 5x3 = 5
Eq. 2 : x1 + x2 + x3 = 6
E1. 3 : 4x1 + 6x2 + 5x3 = 7
Coefficients for x1 ; x2 ; x3
From eq. 1 : 1 ; 2 ; 5
From eq. 2 : 1 ; 1 ; 1
From eq. 3 : 4 ; 6 ; 5
So matrix A is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D)
And the vector of vriables (X) is:
![\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D)
Now we can find the resulting vector (B) using the 'resulting values' from each equation:
![\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
In conclusion, AX=B is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
We have to calculate the probability of picking a 4 and then a 5 without replacement.
We can express this as the product of the probabilities of two events:
• The probability of picking a 4
,
• The probability of picking a 5, given that a 4 has been retired from the deck.
We have one card in the deck out of fouor cards that is a "4".
Then, the probability of picking a "4" will be:

The probability of picking a "5" will be now equal to one card (the number of 5's in the deck) divided by the number of remaining cards (3 cards):

We then calculate the probabilities of this two events happening in sequence as:

Answer: 1/12
Answer:
Its just 3
Step-by-step explanation:
Because its absolute value.
Hope this helps!
Answer: 102.4 cm^2
Step-by-step explanation:
find the surface area of all of the rectangles
7.2(4)=28.8
7.2(2)=14.4
7.2(4)=28.8
7.2(2)=14.4
4(2)=8
4(2)=8
add
28.8+14.4+28.8+14.4+8+8=102.4