Answer:
1) 
2) 
3) 
And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
4) 
And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Step-by-step explanation:
For this case we have the following distributions given:
Probability M J
0.3 14% 22%
0.4 10% 4%
0.3 19% 12%
Part 1
The expected value is given by this formula:

And replacing we got:

Part 2

Part 3
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
Part 4
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
357/100
because .57 is the same as 57 hundriths which translates to 57/100. Now you have 3 and 57/100 and to make thing into an improper fraction you follow these steps.
1. mulitply the whole number (the number in front on the fraction) by the denominator (the lower part of the fraction). In our case, multiply 3 and 100. You get 300.
2. Add your answer to the numorator (the upper part on the fraction). 300 plus 57 equals 357.
3. Use your answer as the new numorator and keep the original denomanator.
Answer: 357/100
Answer:
35
Step-by-step explanation:
If the two lines are parallel and has other line intersect ; the angle will be equal so the answer is 35.
Add 121/4 to each side:
x²+11x+121/4 < 121/4-8
x²+11x+121/4 < 89/4
(x+11/2)² < √89/2 ⇒ -√89/2 < x+11/2 < √89/2
-11/2-√89/2 < x < -11/2+√89/2