Answer:
n= 4f/5+90
Step-by-step explanation:
f= 5(n−90)
/4 (simplify)
f * 4=5(n−90) (multiply 4 on both sides)
4f=5(n−90) (regroup)
4f/5
=n−90 (divide 5 on both sides)
4f/5
+90=n (add 90 to both sides)
Answer:
a mathematical object that possesses a bound is bounded
Step-by-step explanation:
a lower bound is a value that is less than or equal to every element of set of data. a upper bound is a value that is greater than or equal to every element of set of data.
<h3>
Answer:</h3>
(x, y) = (7, -5)
<h3>
Step-by-step explanation:</h3>
It generally works well to follow directions.
The matrix of coefficients is ...
![\left[\begin{array}{cc}2&4\\-5&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C-5%263%5Cend%7Barray%7D%5Cright%5D)
Its inverse is the transpose of the cofactor matrix, divided by the determinant. That is ...
![\dfrac{1}{26}\left[\begin{array}{ccc}3&-4\\5&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B26%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-4%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D)
So the solution is the product of this and the vector of constants [-6, -50]. That product is ...
... x = (3·(-6) +(-4)(-50))/26 = 7
... y = (5·(-6) +2·(-50))/26 = -5
The solution using inverse matrices is ...
... (x, y) = (7, -5)
Answer:
2
Step-by-step explanation:
We can write a proportion to determine
42 people 6 people
---------------- = ----------------
14 boats x boats
Using cross products
42x = 6*14
42x =84
Divide each side by 42
42x/42 = 84/42
x = 2
They will need 2 boats
Answer:
P (X ≤ 4)
Step-by-step explanation:
The binomial probability formula can be used to find the probability of a binomial experiment for a specific number of successes. It <em>does not</em> find the probability for a <em>range</em> of successes, as in this case.
The <em>range</em> "x≤4" means x = 0 <em>or</em> x = 1 <em>or </em>x = 2 <em>or</em> x = 3 <em>or</em> x = 4, so there are five different probability calculations to do.
To to find the total probability, we use the addition rule that states that the probabilities of different events can be added to find the probability for the entire set of events only if the events are <em>Mutually Exclusive</em>. The outcomes of a binomial experiment are mutually exclusive for any value of x between zero and n, as long as n and p don't change, so we're allowed to add the five calculated probabilities together to find the total probability.
The probability that x ≤ 4 can be written as P (X ≤ 4) or as P (X = 0 or X = 1 or X = 2 or X = 3 or X = 4) which means (because of the addition rule) that P(x ≤ 4) = P(x = 0) + P(x = 1) + P (x = 2) + P (x = 3) + P (x = 4)
Therefore, the probability of x<4 successes is P (X ≤ 4)