1/2 and 1/3 1/4. Is the answer I automatically thought of
Answer:
The upper boundary of the 95% confidence interval for the average unload time is 264.97 minutes
Step-by-step explanation:
We have the standard deviation for the sample, but not for the population, so we use the students t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 35 - 1 = 35
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 34 degrees of freedom(y-axis) and a confidence level of
). So we have T = 2.0322
The margin of error is:
M = T*s = 2.0322*30 = 60.97
The upper end of the interval is the sample mean added to M. So it is 204 + 60.97 = 264.97
The upper boundary of the 95% confidence interval for the average unload time is 264.97 minutes
Answer:
The question is incomplete, so I will describe the sine regression model.
The function
y = 0.884 sin(0.245x - 1.093) + 0.400
correspond to the general equation:
y = a sin(bx - c) + d
where:
a = 0.884
b = 0.245
c = 1.093
d = 0.400
The amplitude of the function is computed as follows:
amplitude = |a| = 0.884
The period of the function is computed as follows:
period = 2π/|b| = 25.6456
The phase shift of the function is computed as follows:
phase shift = c/b = 4.4612 to the right (because there is a minus sign before c in the equation)
The vertical shift of the function is computed as follows:
vertical shift = d = 0.400