Answer: Systolic pressure.
Explanation:
Every time the heart beats, it pumps blood into the arteries, which are vessels through which blood circulates from your heart to your tissues with the oxygen and nutrients they need. Blood pressure is the force of the blood pushing against the walls of the arteries, and is highest when the heart beats, pumping blood, which is measured as systolic pressure (i.e., when the heart contracts). On the other hand, diastolic blood pressure refers to the pressure of blood in the artery when the heart relaxes between beats (i.e., when the heart relaxes). Since there are two types of pressures, blood pressure readings are given in two numbers, with the top number being the systolic pressure and the bottom number being the diastolic pressure.
For example, if the systolic pressure measured in a person is 125 millimeters of mercury (mm Hg) and the diastolic pressure is 85 mm Hg, the blood pressure is recorded as 125/85.
So, <u>the systolic blood pressure is registered with the stethoscope when the cuff is deflated.</u> When two heartbeats are heard, the pressure gauge reading is recorded. <u>When the heartbeat ceases, the cuff pressure is released and the diastolic pressure is measured at this time.</u>
An autotroph is an organism that can build its own food
Answer:
Post-translational modification, alternative splicing, DNA mutations
Explanation:
The diversity of the proteome can occur at different levels of biological processes:
1. During DNA replication yielding DNA mutations.
2. At the mRNA level in Alternative Splicing.
3. After translation on amino acid molecules including addition of different types of sugars (Glycosylation). This is post-translational modification.
Answer:
The Simplest of Eukaryotic Cells. Microsporidia are intracellular parasites that infect most other eukaryotic cells, although arthropods are the most commonly parasitized. They are the simplest and smallest eukaryotic cells and thus represent a textbook example of reductive evolution [1].
Link: https://designmatrix.wordpress.com/2009/03/10/the-simplest-of-eukaryotic-cells/