Remember how the tangent function is defined as

Now where exactly are the vertical assymptotes? Well, where cosx = 0, because anything over 0 is undefined, and where a value is undefined, you are required to draw a vertical assymptote.
Now where exactly are the x interecepts? Well, where sinx = 0, because remember, an x-intercept is where y = 0, or where it crosses the x-axis, meaning where the tangent function is equal to 0.
So the x-intercepts are at where sinx = 0.
Answer:
x=11 (read below)
Step-by-step explanation:
7 + x = 18
<em>Subtract 7 from both sides</em>
x=11
It's quite simple because if you do something to one side of the equation, you need to do it to the other because otherwise the equation won't be equal. This is how you need to simplify most problems, by taking something from one side and taking from the other as well.
Answer:
option c is correct.
Step-by-step explanation:
![7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)](https://tex.z-dn.net/?f=7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B16x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B8x%7D%5Cright%29)
WE need to simplify this equation.
Solve the parenthesis of each term.
![=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right](https://tex.z-dn.net/?f=%3D7%5Cleft%5Csqrt%5B3%5D%7B2x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B16x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B8x%7D%5Cright)
Now, We will find factors of the terms inside the square root
factors of 2: 2
factors of 16 : 2x2x2x2
factors of 8: 2x2x2
Putting these values in our equation:![=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2X2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%20x%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
Adding like terms we get:
![=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%5C%5C%3D%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C)
![(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5Ccan%5C%2C%5C%2Cbe%20%5C%2C%5C%2C%20written%5C%2C%5C%2C%20as%5C%2C%5C%2C%5C%5C%28%5Csqrt%5B3%5D%20%7B2x%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
So, option c is correct