Answer:
<h2>x = 145°, y = 35°</h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
m || n
<em><u>So</u></em><em><u>,</u></em>
35° = y° <em>[</em><em>Alternate</em><em> </em><em>interior</em><em> </em><em>angles</em><em>]</em>
<em>And</em><em>,</em>
y° + x° = 180° <em>[</em><em>Since</em><em> </em><em>linear</em><em> </em><em>pair</em><em>]</em>
=> x + 35 = 180
=> x = 180 - 35
=> x = 145°
<em><u>Hence</u></em><em><u>, </u></em>
<em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>145</u></em><em><u>°</u></em><em><u>,</u></em><em><u> </u></em><em><u>y</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>35</u></em><em><u>°</u></em>
 
        
                    
             
        
        
        
Answer:
Option A. y = 4x
Step-by-step explanation:
From the question given above, the following data were obtained:
X >> Y
3 >> 12
4 >> 16
5 >> 20
6 >> 24
7 >> 28
Next, we shall use each of the options to obtain the first two value of y to which will correspond to the table above. This is illustrated below:
For Option A:
1. y = 4x
x = 3
y = 4 × 3
y = 12
2. y = 4x
x = 4
y = 4 × 4
y = 16
For Option B:
1. y = 4x + 12
x = 3
y = 4(3) + 12 
y = 12 + 12
y = 24
2. y = 4x + 12
x = 4
y = 4(4) + 12 
y = 16 + 12
y = 28
For Option C:
1. y = ¼ x
x = 3
y = ¼ × 3
y = ¾
2. y = ¼ x
x = 4
y = ¼ × 4
y = 1
For Option D:
1. y = ¼x + 12
x = 3
y = ¼(3) + 12
y = ¾ + 12
y = 51/4
2. y = ¼x + 12
x = 4
y = ¼(4) + 12
y = 1 + 12
y = 13
From the calculations made above, only option A ie. y = 4x correspond to the data given in the table above. 
 
        
             
        
        
        
Roughly 2,365,200,000. If you have muiltiple choices round up to the nearest
        
             
        
        
        
Answer:
Test it.  Is 1.752 close to 8?
1.752 = 3.0625
3.0625 is not close to 8.
Step-by-step explanation:
 
        
             
        
        
        
Answer:
26°
Step-by-step explanation:
AC=tan 64
BC=x=sec 64
Using sine rule
(Sin 64)/tan 64 = (sin BAC)/sec 64
Cos 64 = (sin BAC)(cos 64)
Sin BAC= 1
BAC=90
ACB+ 64+90=180
ACB= 26°