Answer:
vertex = (- 1, 1 )
Step-by-step explanation:
Given a parabola in standard form
y = ax² + bx + c ( a ≠ 0 )
Then the x- coordinate of the vertex is
x = - 
y = x² + 2x + 2 ← is in standard form
with a = 1 and b = 2 , then
x = -
= - 1
substitute x = - 1 into the equation for y- coordinate of vertex
y = (- 1)² + 2(- 1) + 2 = 1 - 2 + 2 = 1
vertex = (- 1, 1 )
The first step for solving this expression is to insert what a and b stand for into the expression. This will change the expression to the following:
2(2)(4)³ + 6(2)³ - 4(2)(4)²
Now we can start solving this by factoring the expression
2(2 × 4³ + 3 × 2³ - 4 × 4²)
Write 4³ in exponential form with a base of 2.
2(2 ×

+ 3 × 2³ - 4 × 4²)
Calculate the product of -4 × 4².
2(2 ×

+ 3 × 2³ -4³)
Now write 4³ in exponential form with a base of 2.
2(2 ×

+ 3 × 2³ -

)
Collect the like terms with a base of 2.
2(

+ 3 × 2³)
Evaluate the power of 2³.
2(

+ 3 × 8)
Evaluate the power of

.
2(64 + 3 × 8)
Multiply the numbers.
2(64 + 24)
Add the numbers in the parenthesis.
2 × 88
Multiply the numbers together to find your final answer.
176
This means that the correct answer to your question is option A.
Let me know if you have any further questions.
:)
Answer:
The formula for this quadratic function is x*2 +6x+13
Step-by-step explanation:
If we have the vertex and one point of a parabola it is possible to find the quadratic function by the use of this
y= a (x-h)*2 + K
Quadratic function looks like this
y= ax*2 + bx + c
So let's find the a
y= a (x-h)*2 + K where
y is 13, x is 0, h is -3 and K is 4
13= a (0-(-3))*2 +4
13=9a +4
9=9a
9/9=a
1=a
The quadratic function will be
y= 1(x+3)*2 + 4
Let's get the classic form
(x+3)*2 = (x+3)(x+3)
(x*2+3x+3x+9)
x*2 +6x+13
f(0) = 13