Answer:
A(t) = 300 -260e^(-t/50)
Step-by-step explanation:
The rate of change of A(t) is ...
A'(t) = 6 -6/300·A(t)
Rewriting, we have ...
A'(t) +(1/50)A(t) = 6
This has solution ...
A(t) = p + qe^-(t/50)
We need to find the values of p and q. Using the differential equation, we ahve ...
A'(t) = -q/50e^-(t/50) = 6 - (p +qe^-(t/50))/50
0 = 6 -p/50
p = 300
From the initial condition, ...
A(0) = 300 +q = 40
q = -260
So, the complete solution is ...
A(t) = 300 -260e^(-t/50)
___
The salt in the tank increases in exponentially decaying fashion from 40 grams to 300 grams with a time constant of 50 minutes.
X+20 because x= origanal amount +20 more
The answer is AB= 4.62; mA= 22; mB=68
You could quickly find the answer by just using Pythagorean theorem to find AB.
4.3^2 +1.7^2 = AB^2
Answer:
Option C is correct.
Step-by-step explanation:
The area of 1 side of the divider is approximately 8 x 3 = 24 < 25
Hope this helps!
:)