Answer:
2 and a half, but it wants it as a mixed fraction which would be 5/2
Step-by-step explanation:
i hope this helped :)
Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.
Answer: FIRST OPTION
Step-by-step explanation:
<h3>
The missing picture is attached.</h3>
By definition, given a Quadratic equation in the form:

Where "a", "b" and "c" are numerical coefficients and "x" is the unknown variable, you caN use the Quadratic Formula to solve it.
The Quadratic Formula is the following:

In this case, the exercise gives you this Quadratic equation:

You can identify that the numerical coefficients are:

Therefore, you can substitute values into the Quadratic formula shown above:

You can identify that the equation that shows the Quadratic formula used correctly to solve the Quadratic equation given in the exercise for "x", is the one shown in the First option.
900 because 9 is greater than 5 so it rounds to my answer.
Answer:
4
the fourth expression is a rational