Answer: 5.36363636364
Step-by-step explanation:
91+ 129+ 16=236
236 ÷44= 5.36363636364
Let <em>n</em> be the unknown number. We can write it as
<em>n</em> = 10<em>a</em> + <em>b</em>
with <em>a</em> and <em>b</em> integers between 1 and 9 (either with positive or negative sign).
Reversing the digits gives another number
<em>m</em> = 10<em>b</em> + <em>a</em>
The first number is increased by 54 when the digits are reversed, which means
<em>m</em> = <em>n</em> + 54 → 10<em>b</em> + <em>a</em> = 10<em>a</em> + <em>b</em> + 54 → 9<em>b</em> - 9<em>a</em> = 54 → <em>b</em> - <em>a</em> = 6
The digit in the tens place of <em>n</em> is 3 times the digit in the ones place, so
<em>a</em> = 3<em>b</em>
Substitute this into the previous equation and solve for <em>b</em> :
<em>b</em> - <em>a</em> = <em>b</em> - 3<em>b</em> = -2<em>b</em> = 6 → <em>b</em> = -3
Solve for <em>a</em> :
<em>a</em> = 3<em>b</em> = 3(-3) = -9
Then the original number is <em>n</em> = 10<em>a</em> + <em>b</em> = 10(-9) + (-3) = -93
95.7942857 pie form hope this is right got it off the internet so yeah
<span>Let A be the center of a circle and two angles at the adjacent center AOB and BOC. Knowing the measure of the angle AOB = 120 and the measure BOC = 150, find the measures of the angles of the ABC triangle.
</span>solution
Given the above information;
AC=AB, therefore ABC is an isosceles triangle.
therefore, BAO=ABO=(180-120)/2=30
OAC=OCA=(180-90)/2=45
OBC=BCO=(180-150)/2=15
THUS;
BAC=BAO+OAC=45+30=75
ABC=OBA+CBO=15+30=45
ACB=ACO+BCO=15+45=60