Three important properties of the diagonals of a rhombus that we need for this problem are:
1. the diagonals of a rhombus bisect each other
2. the diagonals form two perpendicular lines
3. the diagonals bisect the angles of the rhombus
First, we can let O be the point where the two diagonals intersect (as shown in the attached image). Using the properties listed above, we can conclude that ∠AOB is equal to 90° and ∠BAO = 60/2 = 30°.
Since a triangle's interior angles have a sum of 180°, then we have ∠ABO = 180 - 90 - 30 = 60°. This shows that the ΔAOB is a 30-60-90 triangle.
For a 30-60-90 triangle, the ratio of the sides facing the corresponding anges is 1:√3:2. So, since we know that AB = 10, we can compute for the rest of the sides.



Similarly, we have



Now, to find the lengths of the diagonals,


So, the lengths of the diagonals are 10 and 10√3.
Answer: 10 and 10√3 units
Let the angle of elevation be θ.
We have a right angled triangle with an opposite of 300.5 ft. (306 - 5.5) and an adjacent of 400 ft. Recalling SOH CAH TOA, tanθ = O/A.
tan(θ) = 300.5/400.
θ = tan^-1(300.5/400).
θ = 36.9°.
Answer:
250
Step-by-step explanation:
divide 1000 by .4
Answer:
50 cm
Step-by-step explanation:
4/5 = 40/x
cross multiply
4x=200
x=50
The correct answer is C. 2x+5y+15