Answer:
If x is the distance from centre fo the circle, with radius 25cm, to its intersection point with the common chord, x²+24²=25² =>x=7cm.
Distance from this intersecting point to the centre of the other circle=39–7=32cm
Ratio of the sides of the right triangle thus formed is 24:32=3:4. Since 3:4:5 is the basic pythagorean triplet, the radius of the other circle=5*24/3=40cm.
Aliter: radius of the other circle=√32²+24²= 40cm.
<h2><em>please</em><em> </em><em>mark</em><em> me</em><em> as</em><em> brainalist</em></h2>
Answer:
x=1
Step-by-step explanation:
Just look at the x axis and see where the coordinate lands on and it's 1
Total Area: T.A.=2*Ab+Al
Area of the base: Ab=p*K
Semi-perimeter of the base: p
p=P/2
Perimeter of the base: P=20
p=P/2=20/2→p=10
Ab=p*k=10*K→Ab=10K
Lateral Area of the prism: Al
Al=P*h
Height of the prism: h=6
Al=P*h=20*6→
Al=120
T.A.=2*Ab+Al
T.A.=2*(10K)+120
T.A.=20K+120
T.A.=120+20K
Answer: (120+20K)
There are certain rules to follow when rotating a point 90 deg clockwise. Since it is given that ABCD is a parallelogram and the coordinates of point C are given, we just have to follow this simple relation:
R(90 deg) : (X,Y) ---> (-Y,X)
Using the given coordinates:
R(90 deg<span>) : (-4,1) ---> (-1,-4)
</span>
Therefore, Point C' will be located at (-1,-4)
Answer:

Step-by-step explanation:
To make d the subject of formula, we need to rearrange the equation such that we arrive at d= _____.

<em>Remove the fraction by multiplying (d +3) on both sides:</em>

<em>Expand</em><em>:</em>
<em>
</em>
<em>Bring</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>d</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>one</em><em> </em><em>side</em><em> </em><em>and</em><em> </em><em>move</em><em> </em><em>the</em><em> </em><em>others</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em> </em><em>side</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>equation</em><em>:</em>

<em>Factorise</em><em> </em><em>d</em><em> </em><em>out</em><em>:</em>
<em>
</em>
<em>Divide</em><em> </em><em>by</em><em> </em><em>(</em><em>c</em><em> </em><em>+</em><em>1</em><em>)</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>
<em>
</em>