Lol I was looking for help for this question but I couldn't find it so I had to figure it out my self and the answer is 40
![\LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}](https://tex.z-dn.net/?f=%20%5CLARGE%7B%20%5Cboxed%7B%20%5Cmathbb%7B%20%5Ccolor%7Bpurple%7D%7BSOLUTION%3A%7D%7D%7D%7D)
We have, Discriminant formula for finding roots:
![\large{ \boxed{ \rm{x = \frac{ - b \pm \: \sqrt{ {b}^{2} - 4ac} }{2a} }}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Cboxed%7B%20%5Crm%7Bx%20%3D%20%20%5Cfrac%7B%20%20-%20b%20%5Cpm%20%5C%3A%20%20%5Csqrt%7B%20%7Bb%7D%5E%7B2%7D%20%20-%204ac%7D%20%7D%7B2a%7D%20%7D%7D%7D)
Here,
- x is the root of the equation.
- a is the coefficient of x^2
- b is the coefficient of x
- c is the constant term
1) Given,
3x^2 - 2x - 1
Finding the discriminant,
➝ D = b^2 - 4ac
➝ D = (-2)^2 - 4 × 3 × (-1)
➝ D = 4 - (-12)
➝ D = 4 + 12
➝ D = 16
2) Solving by using Bhaskar formula,
❒ p(x) = x^2 + 5x + 6 = 0
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - 5\pm \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20-%205%5Cpm%20%20%5Csqrt%7B%28%20-%205%29%20%7B%7D%5E%7B2%7D%20-%204%20%5Ctimes%201%20%5Ctimes%206%20%7D%7D%20%7B2%20%5Ctimes%201%7D%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm \sqrt{25 - 24} }{2 \times 1} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20-%205%20%20%5Cpm%20%20%5Csqrt%7B25%20-%2024%7D%20%7D%7B2%20%5Ctimes%201%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm 1}{2} }}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20-%205%20%5Cpm%201%7D%7B2%7D%20%7D%7D)
So here,
![\large{\boxed{ \rm{ \longrightarrow \: x = - 2 \: or - 3}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20-%202%20%5C%3A%20or%20%20-%203%7D%7D%7D)
❒ p(x) = x^2 + 2x + 1 = 0
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4 \times 1 \times 1} }{2 \times 1} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20%20-%202%20%5Cpm%20%20%5Csqrt%7B%20%7B2%7D%5E%7B2%7D%20%20-%204%20%5Ctimes%201%20%5Ctimes%201%7D%20%7D%7B2%20%5Ctimes%201%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20-%202%20%5Cpm%20%5Csqrt%7B4%20-%204%7D%20%7D%7B2%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm 0}{2} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20-%202%20%5Cpm%200%7D%7B2%7D%20%7D%7D)
So here,
![\large{\boxed{ \rm{ \longrightarrow \: x = - 1 \: or \: - 1}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20-%201%20%5C%3A%20or%20%5C%3A%20%20-%201%7D%7D%7D)
❒ p(x) = x^2 - x - 20 = 0
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 1) \pm \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%20-%20%28%20-%201%29%20%5Cpm%20%20%5Csqrt%7B%28%20-%201%29%20%7B%7D%5E%7B2%7D%20-%204%20%5Ctimes%201%20%5Ctimes%20%28%20-%2020%29%20%7D%20%7D%7B2%20%5Ctimes%201%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B%201%20%5Cpm%20%5Csqrt%7B1%20%2B%2080%7D%20%7D%7B2%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{1 \pm 9}{2} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B1%20%5Cpm%209%7D%7B2%7D%20%7D%7D)
So here,
![\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \: - 4}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%205%20%5C%3A%20or%20%5C%3A%20%20-%204%7D%7D%7D)
❒ p(x) = x^2 - 3x - 4 = 0
![\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%20%5Cdfrac%7B%20%20-%20%28%20-%203%29%20%5Cpm%20%5Csqrt%7B%28%20-%203%29%20%7B%7D%5E%7B2%7D%20-%204%20%5Ctimes%201%20%5Ctimes%20%28%20-%204%29%20%7D%20%7D%7B2%20%5Ctimes%201%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm \sqrt{9 + 16} }{2 \times 1} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B3%20%5Cpm%20%5Csqrt%7B9%20%20%2B%2016%7D%20%7D%7B2%20%5Ctimes%201%7D%20%7D%7D)
![\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm 5}{2} }}](https://tex.z-dn.net/?f=%5Clarge%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%20%20%5Cdfrac%7B3%20%20%5Cpm%205%7D%7B2%7D%20%7D%7D)
So here,
![\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \: - 1}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%20%5Crm%7B%20%5Clongrightarrow%20%5C%3A%20x%20%3D%204%20%5C%3A%20or%20%5C%3A%20%20-%201%7D%7D%7D)
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
why
Step-by-step explanation:
A. -4
b. -6
c. 0 if the expression is 6 - 8 + 2 but if it is 6 - 8 ÷ 2 = 2
d. -2.1
The store owner sold 4/5 of the suitces. That means 1/5 of the suitcases are left. Multiple 225 to 1/5
There are 45 suitcases left