1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
3 years ago
9

Tanisha bought 4 bundled packs of comic books. The price of each pack was the same. After she bought the packs, her account bala

nce showed a change of -$86.64. What would have been the change to tanisha's account balance had she only 1 bundled 1 pack of comic books?
Mathematics
1 answer:
jeyben [28]3 years ago
7 0
86.64/4 = 21.66 for each pack.....so, if she only bought 1 bundled pack, hr account balance would have showed : - 21.66
You might be interested in
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Find the vertex and focus of the<br> parabola? Y^2 – 4y + 12x – 8 = 0
hammer [34]

Answer:

Add

8

to both sides of the equation.

Y^2 - 4y + 12x = 8

8 0
3 years ago
(GIVING BRAINLIEST!!!)<br> L i nk Is below!! Keep in mind, you don't have to answer all of it xd
dsp73

Answer:

1.

  1). 1/8

  2). 1/10

  3). 1/15

  4). 1/16

4 0
3 years ago
Quadrilateral ABCD with vertices A(-4, 1), B(-2, 3),C(0, -2), and D(-5, -2): k = 3
german
There is nothing for me to go off of
5 0
3 years ago
Answer please thanks
Sergeu [11.5K]
The common denominator is (x+2)(x-2)
notice that x²-4 is the difference of two square
when you solve it you get (x+2)(x-2). (x+2) can go into (x+2)(x-2).

3 0
3 years ago
Other questions:
  • Help with this problem please ♥️
    13·1 answer
  • What value of x is in the solution set of 2x – 3 &gt; 11 – 5x?
    12·2 answers
  • rs. Hall records the heights of 50 students in a spreadsheet. The mean height is 68 inches. After looking at the data again, she
    11·1 answer
  • Which decimal is equivalent to 3/4 ?
    14·1 answer
  • Which function BEST expresses the linear relationship displayed by the scatter plot?
    11·1 answer
  • You are going shopping. You are given 40 dollars to buy clothing. You buy
    15·2 answers
  • How many inches are equal to 12 cm ?
    7·2 answers
  • I neee help Please!!!
    12·1 answer
  • Solve for x.
    12·1 answer
  • Find the area of the rectangle
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!