1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
2 years ago
7

Area of the bounded curves y=x^2, y=√(7+x)

Mathematics
1 answer:
N76 [4]2 years ago
5 0

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
A rectangle has a length of x+ 4 centimeters and a width of x centamentere the perimeter of the rectangle is 28cm what is the va
Mashutka [201]

Answer: The perimeter of the rectangle is 28 centimeters.

Step-by-step explanation: I hope this helps-

6 0
2 years ago
Read 2 more answers
Solve the poprotion 38/25=n/12
ANEK [815]

Answer:

  n = 18 6/25

Step-by-step explanation:

Multiply both sides by 12.

  12(38/25) = 12(n/12)

  456/25 = n = 18 6/25 = 18.24

8 0
3 years ago
Solve.<br> X-9 = 12<br> .....
Lelechka [254]

Answer:

x=21

Step-by-step explanation:

x=9+12 x=21

5 0
2 years ago
Read 2 more answers
Stephanie worked 23 hours at $2.22 per hour, and received 12% tips on meals which cost $465. What is Stephanie's total pay?
saw5 [17]
Pay= hourly pay + tip= 23*2.22+(0.12)*465

that should help
7 0
3 years ago
Read 2 more answers
Round 1,208.7438 to the nearest hundredth.
OLga [1]

Answer:

the answer is 1,208.74

4 0
3 years ago
Other questions:
  • How do I find the answer to this problem?
    15·1 answer
  • The proportion of households in a region that do some or all of their banking on the Internet is 0.31. In a random sample of 100
    12·1 answer
  • Place 0.05 , -3 , -22 , 1/2, -1/8 , 0.8 on a Number line
    8·1 answer
  • Need help on #2 asap!
    10·2 answers
  • 9. The expression x(x-7)+4(x-7) is equivalent to each of the following except which choice?
    7·1 answer
  • A shirt is on sale for 1 the original cost, what would be an equivalent decimal and
    9·2 answers
  • 4.
    8·1 answer
  • A right triangle has a height of 22 centimeters and a base of 11 centimeters What is the area of the triangle ?
    14·1 answer
  • Which number line shows all the values of that make the inequality -3 +1 &lt; 7 true?
    5·1 answer
  • Y=-3x+1 y+5=-3(x-2) what do the following two equations represent A)The same line B)Distinct parallel lines C)Perpendicular Line
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!