1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
7

Area of the bounded curves y=x^2, y=√(7+x)

Mathematics
1 answer:
N76 [4]3 years ago
5 0

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Help with this problem?
ankoles [38]
3(x-8)=12
I got this equation since there are three of the "x-8" sections that add up to the twelve length bar above
5 0
3 years ago
$834, 3%, 15 months ?
NISA [10]

Answer: 25.02 x 15= 375.30

Step-by-step explanation:

3 0
3 years ago
PLEASE HELP ASAP!!!!!!
ioda
The answer is 2.54 feet
5 0
4 years ago
What is 5y=2x+3 in standard form ?
tatiyna

the answer in standard form is 2x -5y = -3

4 0
3 years ago
5(x-3)+7(2-x)-4(2x+7)-3x+2=11-8(x-7)+4x-(6-5x)+8-2x
PSYCHO15rus [73]

Answer:

x=-8

Step-by-step explanation:

Simplifying

5(x + -3) + 7(2 + -1x) + -4(2x + 7) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Reorder the terms:

5(-3 + x) + 7(2 + -1x) + -4(2x + 7) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

(-3 * 5 + x * 5) + 7(2 + -1x) + -4(2x + 7) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

(-15 + 5x) + 7(2 + -1x) + -4(2x + 7) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

-15 + 5x + (2 * 7 + -1x * 7) + -4(2x + 7) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

-15 + 5x + (14 + -7x) + -4(2x + 7) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Reorder the terms:

-15 + 5x + 14 + -7x + -4(7 + 2x) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

-15 + 5x + 14 + -7x + (7 * -4 + 2x * -4) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

-15 + 5x + 14 + -7x + (-28 + -8x) + -3x + 2 = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Reorder the terms:

-15 + 14 + -28 + 2 + 5x + -7x + -8x + -3x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Combine like terms: -15 + 14 = -1

-1 + -28 + 2 + 5x + -7x + -8x + -3x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Combine like terms: -1 + -28 = -29

-29 + 2 + 5x + -7x + -8x + -3x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Combine like terms: -29 + 2 = -27

-27 + 5x + -7x + -8x + -3x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Combine like terms: 5x + -7x = -2x

-27 + -2x + -8x + -3x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Combine like terms: -2x + -8x = -10x

-27 + -10x + -3x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Combine like terms: -10x + -3x = -13x

-27 + -13x = 11 + -8(x + -7) + 4x + -1(6 + -5x) + 8 + -2x

Reorder the terms:

-27 + -13x = 11 + -8(-7 + x) + 4x + -1(6 + -5x) + 8 + -2x

-27 + -13x = 11 + (-7 * -8 + x * -8) + 4x + -1(6 + -5x) + 8 + -2x

-27 + -13x = 11 + (56 + -8x) + 4x + -1(6 + -5x) + 8 + -2x

-27 + -13x = 11 + 56 + -8x + 4x + (6 * -1 + -5x * -1) + 8 + -2x

-27 + -13x = 11 + 56 + -8x + 4x + (-6 + 5x) + 8 + -2x

Reorder the terms:

-27 + -13x = 11 + 56 + -6 + 8 + -8x + 4x + 5x + -2x

Combine like terms: 11 + 56 = 67

-27 + -13x = 67 + -6 + 8 + -8x + 4x + 5x + -2x

Combine like terms: 67 + -6 = 61

-27 + -13x = 61 + 8 + -8x + 4x + 5x + -2x

Combine like terms: 61 + 8 = 69

-27 + -13x = 69 + -8x + 4x + 5x + -2x

Combine like terms: -8x + 4x = -4x

-27 + -13x = 69 + -4x + 5x + -2x

Combine like terms: -4x + 5x = 1x

-27 + -13x = 69 + 1x + -2x

Combine like terms: 1x + -2x = -1x

-27 + -13x = 69 + -1x

Solving

-27 + -13x = 69 + -1x

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add 'x' to each side of the equation.

-27 + -13x + x = 69 + -1x + x

Combine like terms: -13x + x = -12x

-27 + -12x = 69 + -1x + x

Combine like terms: -1x + x = 0

-27 + -12x = 69 + 0

-27 + -12x = 69

Add '27' to each side of the equation.

-27 + 27 + -12x = 69 + 27

Combine like terms: -27 + 27 = 0

0 + -12x = 69 + 27

-12x = 69 + 27

Combine like terms: 69 + 27 = 96

-12x = 96

Divide each side by '-12'.

x = -8

Simplifying

x = -8

5 0
3 years ago
Other questions:
  • Martin has 14 plants in his garden. Jacob has 5 fewer pkants.How many plants does jacob have?
    8·2 answers
  • What is the length of the line?
    8·1 answer
  • You want to conduct a survey to find out what sport the students at your school prefer to play.
    13·1 answer
  • A fruit punch recipe requires 2 quarts pf orange juice to be mixed for every 5 quarts of apple juice. Max has 9 quarts of orange
    13·1 answer
  • smoothie sales are on fire. the price is $3 for an adult and $1 for children. if 260 smoothies were sold for a total of 675.00 h
    10·1 answer
  • The height of a parallelogram is 4 times the base. The base measures 3 1/2 ft find the area off the parallelogram
    9·1 answer
  • Please help ASAP ASAP please
    14·1 answer
  • Tell whether the ratios form a proportion<br>True <br> or<br>False ​
    15·1 answer
  • Four-fifths of a spinach casserole is leftover after Sam has lunch. Jackie and Alicia each take 1/2 of the leftover casserole. J
    15·1 answer
  • A football team caught the ball in 60% of the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!