1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
2 years ago
7

Area of the bounded curves y=x^2, y=√(7+x)

Mathematics
1 answer:
N76 [4]2 years ago
5 0

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Five cups of flour are required to make one batch of cookies. How many cups are required to make 2.5 batches?
Kipish [7]
12.5 cups of flour are required to make 2.5 batches
6 0
2 years ago
Read 2 more answers
Name the property that the statement illustrates.
suter [353]

Answer:

Transitive property

Step-by-step explanation:

It statea that if a=b and b=c, then a=c.

7 0
3 years ago
How to find the rate of change of the inputs
iogann1982 [59]

Answer:

To find the average rate of change, we divide the change in the output value by the change in the input value.

4 0
3 years ago
What system of inequalities would you use to solve the problem below?
Flauer [41]

Answer:

answer D

Step-by-step explanation:

Hello

you cannot work more than 22 hours a week so

s + c <= 22

you get paid $8 an hour for swimming lessons and $10 a hour for cashier so you will get

8s + 10c and you make to get at least $190 so

8s + 10c >= 190

the correct answer is the last one

hope this helps

7 0
3 years ago
2. The equation h(t)=−16t2+19t+110 gives the height of a rock, in feet, t seconds after it is thrown from a cliff.
Paul [167]
For this case we have an equation of the form:
 h (t) = - (1/2) * a * t ^ 2 + vo * t + h0
 Where,
 vo: initial speed
 a: acceleration:
 h0: initial height.
 We have the following equation:
 h (t) = - 16t2 + 19t + 110
 Therefore, the initial velocity is:
 vo = 19 feet / s
 Answer:
 
The initial velocity when the rock is thrown:
 
vo = 19 feet / s
8 0
2 years ago
Other questions:
  • PLS HELP KINDA EASY FAST IM TAKING A TEST PLS
    11·1 answer
  • An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed wi
    14·2 answers
  • Which expression is equivalent to 4^6 ⋅ 4^−8?
    7·1 answer
  • In a right triangle with a hypotenuse equal to 5, one leg is one more than the other. Find the lengths of the legs of be triangl
    13·1 answer
  • X<br> B.<br> A<br> с<br> D<br> which points are coplanar and noncollinear ?
    15·1 answer
  • Three years hence a father will four times as old as his son will be. Before two years he was seven times as old as his son was.
    9·2 answers
  • I'm super confused. Can anybody answer while writing the steps?
    8·1 answer
  • 3 of 4
    7·1 answer
  • A little help please ☹️?
    5·2 answers
  • 1. FACTOR : 5x + 20 = *<br> Can You help me to solve this?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!