This is a typical case of a dihybrid cross.
From the phenotype of the offspring, we can conclude that the gene for the red color of the flower and the gene for the axial position of the flower are dominant.
Since we know that the ratio of phenotypes in a dihybrid cross of independently inherited alleles is
9(dominant for both traits)
3(dominant for one trait, recessive for the other)
3(dominant for the second trait, recessive for the other)
1(recessive for both traits)
we can expect 3/16 of the f2 generation to be dominamt for one trait and recessive for the other (red, terminal flowers), or to be precise 190 individuals.
Answer:
When a muscle cell contracts, the myosin heads each produce a single power stroke.
Explanation:
In rest, attraction strengths between myosin and actin filaments are inhibited by the tropomyosin. When the muscle fiber membrane depolarizes, the action potential caused by this depolarization enters the t-tubules depolarizing the inner portion of the muscle fiber. This activates calcium channels in the T tubules membrane and releases calcium into the sarcolemma. At this point, <em>tropomyosin is obstructing binding sites for myosin on the thin filament</em>. When calcium binds to the troponin C, the troponin T alters the tropomyosin by moving it and then unblocks the binding sites. Myosin heads bind to the uncovered actin-binding sites forming cross-bridges, and while doing it ATP is transformed into ADP and inorganic phosphate which is liberated. Myofilaments slide impulsed by chemical energy collected in myosin heads, <u>producing a power stroke</u>. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Z-bands are then pulled toward each other, thus shortening the sarcomere and the I-band, and producing muscle fiber contraction.
Answer:
because the mother sells are less for that kind of cuts so they don't regenerate and in a cut its easier because they are just in number for that cut
Explanation:
Answer:
a vestigial structure
Explanation:
Vestigial structures are a rudimentary (or even functionless) version of a body part, but they have important functions in a closely correlated or evolutionarily close species, an example of which is the presence of eyes in fish of the genus Astyanax. The existence of these vestigial structures is strong evidence that evolution occurs in organisms, since this structure, today without much apparent function, may in the past have been extremely important to the ancestors of that species.