Answer:
The coefficient of
is (-1959552).
Step-by-step explanation:
Given : Expression 
To find : What is the coefficient of the term
in the binomial expansion of expression ?
Solution :
The binomial expansion is 
Where, 
On comparison with given expression 
x=2x , y=-3y and n=10, k=0,1,.....,10.
Substituting in the formula and expand,

![(2x-3y)^{10}=^{10}C_0(2x)^{10-0} (-3y)^0+^{10}C_1(2x)^{10-1} (-3y)^1+^{10}C_2(2x)^{10-2} (-3y)^2+^{10}C_3(2x)^{10-3} (-3y)^3+^{10}C_4(2x)^{10-4} (-3y)^4+^{10}C_5(2x)^{10-5} (-3y)^5+^{10}C_6(2x)^{10-6} (-3y)^6+^{10}C_7(2x)^{10-7} (-3y)^7+^{10}C_8(2x)^{10-8} (-3y)^8+^{10}C_9(2x)^{10-9} (-3y)^9+^{10}C_{10}(2x)^{10-10} (-3y)^{10]](https://tex.z-dn.net/?f=%282x-3y%29%5E%7B10%7D%3D%5E%7B10%7DC_0%282x%29%5E%7B10-0%7D%20%28-3y%29%5E0%2B%5E%7B10%7DC_1%282x%29%5E%7B10-1%7D%20%28-3y%29%5E1%2B%5E%7B10%7DC_2%282x%29%5E%7B10-2%7D%20%28-3y%29%5E2%2B%5E%7B10%7DC_3%282x%29%5E%7B10-3%7D%20%28-3y%29%5E3%2B%5E%7B10%7DC_4%282x%29%5E%7B10-4%7D%20%28-3y%29%5E4%2B%5E%7B10%7DC_5%282x%29%5E%7B10-5%7D%20%28-3y%29%5E5%2B%5E%7B10%7DC_6%282x%29%5E%7B10-6%7D%20%28-3y%29%5E6%2B%5E%7B10%7DC_7%282x%29%5E%7B10-7%7D%20%28-3y%29%5E7%2B%5E%7B10%7DC_8%282x%29%5E%7B10-8%7D%20%28-3y%29%5E8%2B%5E%7B10%7DC_9%282x%29%5E%7B10-9%7D%20%28-3y%29%5E9%2B%5E%7B10%7DC_%7B10%7D%282x%29%5E%7B10-10%7D%20%28-3y%29%5E%7B10%5D)

So, The coefficient of
is (-1959552).