since the equation is c=9.5t, Sanjay paid c=9.5 x 14 shirts he bought. which =$133
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
Step-by-step explanation:
Remark
The last digit is 1 3 5 7 9 because the last digit is odd.
The first digit must be a 3 because the number is between 300 and 350
Let the first digit = x
Let the second digit = y
Let the third digit = z
x + y = z
x + y + z = 14 Substitute z for x + y
z + z = 14 Combine
2z = 14 Divide by 2
2z/2 = 14/2
z = 7
The first digit is 3 and the third digit = 7
The middle digit is 3 less than the last digit.
y = 7 - 3 = 4
Answer
347
Answer:
Step-by-step explanation:
Let the number of blue marbles be x
The number of green marbles = 3x - 2
Total marbles= 18
x + 3x -2 = 18
4x - 2 = 18
4x = 18+2
4x = 20
x =20/4
x =5
The number of blue marbles = 5
The number of green marbles = 3*5 - 2 = 15 -2 = 13
Total numbers of whole number that has a sum of 12.
1. 11 + 1 = 12
2. 10 + 2 = 12
3. 9 + 3 = 12
4. 8 + 4 = 12
5. 7 + 5 = 12
6. 6 + 6 = 12
7. 12 + 0= 12
so there are 7 pairs of whole numbers being added that have a sum of 12