-4p+1 = -4(2)+1 = -8+1 = -7
Answer:
![-\frac{3p^8}{4q^3}](https://tex.z-dn.net/?f=-%5Cfrac%7B3p%5E8%7D%7B4q%5E3%7D)
Step-by-step explanation:
can be broken down into three fractions, coefficients, powers of p, powers of q.
![-\frac{15}{20}\cdot\frac{p^{-4}}{p^{-12}}\cdot\frac{q^{-6}}{q^{-3}}](https://tex.z-dn.net/?f=-%5Cfrac%7B15%7D%7B20%7D%5Ccdot%5Cfrac%7Bp%5E%7B-4%7D%7D%7Bp%5E%7B-12%7D%7D%5Ccdot%5Cfrac%7Bq%5E%7B-6%7D%7D%7Bq%5E%7B-3%7D%7D)
Simplify the first fraction, then simplify the others by subtracting numerator exponents minus denominator exponents.
![-\frac{3}{4} p^{-4-(-12)} q^{-6-(-3)} =-\frac{3}{4} p^8 q^{-3} = \alpha -\frac{3p^8}{4q^3}](https://tex.z-dn.net/?f=-%5Cfrac%7B3%7D%7B4%7D%20p%5E%7B-4-%28-12%29%7D%20q%5E%7B-6-%28-3%29%7D%20%3D-%5Cfrac%7B3%7D%7B4%7D%20p%5E8%20q%5E%7B-3%7D%20%3D%20%5Calpha%20-%5Cfrac%7B3p%5E8%7D%7B4q%5E3%7D)
√23-irrational
104.42-rational
√64-irrational
49.396-rational
10.97846727460-rational
Answer:
1 3/8
Step-by-step explanation:
Well to find the average or the mean we need to add all the numbers,
3/8 + 2/4 + 5/8 + 7/8 + 1 1/8 + 1 5/8 + 1 7/8 + 4
= 11
Then we divide t by the number of numbers in the set.
11 ÷ 8 = 1 3/8
<em>Thus,</em>
<em>the average in the set is 1 3/8.</em>
<em />
<em>Hope this helps :)</em>
Answer:
try the answer D
Step-by-step explanation: