Answer:24x^2+24x
Step-by-step explanation:
24x^2+24x,por que es multiplicar el término de afuera con cada uno de los que están dentro del paréntesis y el triangulo antes del dos se refiere a que el dos es el exponente de 24 x(24x ala 2 potencia)
Answer: download the app photomath it will help give you answers
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given: f(x)=5x^3-51x^2+77x+100/x^2-11x+24
Please use parentheses to eliminate any ambiguity:
f(x) = (5x^3-51x^2+77x+100) / (x^2 - 11x + 24)
or (better yet):
5x^3-51x^2+77x+100
f(x) = ---------------------------------
x^2 - 11x + 24
The vertical asymptotes here are at the zeros of the denominator:
x^2 - 11x + 24 = 0, This quadratic equation has coefficients a = 1, b = -11 and c = 24. Thus, its roots (zeros) are:
-(-11) ± √( 121 - 4(1)(24) )
x = -------------------------------------
2(1)
or:
11 ± √( 25 )
x = --------------------
2
or: x = 8 and x = 3
The vertical asymptotes are x = 8 and x = 3.
If we attempt to divide x^2 - 11x + 24 into 5x^3 - 51x^2 + 77x + 100, we see that the first term of the quotient is 5x. As x increases or decreases without bound, 5x goes to either ∞ or -∞, so we conclude that there is no horiz. asymptote. Continuing this division results in:
5x + 4 + a fraction
This represents the slant asymptote, y = 5x + 4
Formula for Perimeter of Rectangle:
P = 2(L + W)
Plug in 160:
160 = 2(L + W)
L = 4W
So we can plug in '4W' for 'L' in the first equation.
<span>160 = 2(L + W)
160 = 2(4W + W)
Combine like terms:
160 = 2(5W)
160 = 10W
Divide 10 to both sides:
W = 16
Now we can plug this back into any of the two equations to find the length.
L = 4W
L = 4(16)
L = 64
So the width is 16, and the length is 64.</span>
Answer:
Part A : y²(x + 2)(x + 4)
Part B: (x + 4) (x + 4)
Part C: (x + 4) (x - 4)
Step-by-step explanation:
Part A: Factor x²y²+ 6xy²+ 8y²
x²y²+ 6xy²+ 8y²
y² is very common across the quadratic equation , hence
= y² (x² + 6x + 8)
= (y²) (x² + 6x + 8)
= (y²) (x² + 2x +4x + 8)
= (y²) (x² + 2x)+(4x + 8)
= (y²) (x(x + 2)+ 4(x + 2))
= y²(x+2)(x+4)
Part B: Factor x² + 8x + 16
x² + 8x + 16
= x² + 4x + 4x + 16
= (x² + 4x) + (4x + 16)
= x( x + 4) + 4(x + 4)
= (x + 4) (x + 4)
Part C: Factor x² − 16
= x² − 16
= x² + 0x − 16
= x² + 4x - 4x - 16
= (x² + 4x) - (4x - 16)
= x (x + 4) - 4(x + 4)
= (x + 4) (x - 4)