2)
(-3, 3) (2,0)
slope = (3-0)/(-3-2) = -3/5
3)
y = 3
so slope = 0
The difference between the 6th term and the 9th term of the sequence is 135
<h3>How to determine the difference</h3>
Given that the nth term is;
3n² + 11
For the 6th term, the value of n is 6
Let's solve for the 6th term
= 3( 6)^2 + 11
= 3 × 36 + 11
= 108 + 11
= 119
For the 9th term, n = 9
= 3 (9)^2 + 11
= 3( 81) + 11
= 243 + 11
= 254
The difference between the 6th and 9th term
= 254 - 119
= 135
Thus, the difference between the 6th term and the 9th term of the sequence is 135
Learn more about algebraic expressions here:
brainly.com/question/4344214
#SPJ1
Answer:
y = -16.9
Step-by-step explanation:
<u>→Add 0.8y to both sides:</u>
-0.8y + 5.49 = -19.86 - 2.3y
5.49 = -19.86 - 1.5y
<u>→Add 19.86 to both sides:</u>
25.35 = -1.5y
<u>→Divide both sides by -1.5:</u>
-16.9 = y
Since f(g(x)) = g(f(x)) = x, hence the function f(x) and g(x) are inverses of each other.
<h3>Inverse of functions</h3>
In order to determine if the function f(x) and g(x) are inverses of each other, the composite function f(g(x)) = g(f(x))
Given the function
f(x)= 5-3x/2 and
g(x)= 5-2x/3
f(g(x)) = f(5-2x/3)
Substitute
f(g(x)) = 5-3(5-2x)/3)/2
f(g(x)) = (5-5+2x)/2
f(g(x)) = 2x/2
f(g(x)) = x
Similarly
g(f(x)) = 5-2(5-3x/2)/3
g(f(x)) = 5-5+3x/3
g(f(x)) = 3x/3
g(f(x)) =x
Since f(g(x)) = g(f(x)) = x, hence the function f(x) and g(x) are inverses of each other.
Learn more on inverse of a function here: brainly.com/question/19859934
#SPJ1