Well first we need to change the format of the equations to slope-intercept, or y=mx+b.
So the first one (x + y < 1) will be changed to y < -x + 1.
The second one (2y ≥ x - 4) will be changed to y <span>≥ x/2 - 2.
Now we can analyze each graph.
In every single graph the first equation (y < -x + 1) is graphed correctly.
Now for the second equation, we can see that only the first and last graph correctly format to the equation.
Now for the shading:
The first equation shows us that y is less than -x +1, making the shading go under the dotted line. (to the left)
The second equation shows us that y is greater than or equal to x/2 - 2, making the shading go above the line. (also to the left)
Therefore, when we shade, the overlapping shading is correctly formatted in the first graph.
Hope this helped, comment any questions you have for me.</span>
Answer:
y=-5/3x+20
Step-by-step explanation:
Let the equation of the required line be represented as ![\[y=mx+c\]](https://tex.z-dn.net/?f=%5C%5By%3Dmx%2Bc%5C%5D)
This line is perpendicular to the line ![\[y=\frac{3}{5}x+10\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B3%7D%7B5%7Dx%2B10%5C%5D)
![\[=>m*\frac{3}{5}=-1\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%2A%5Cfrac%7B3%7D%7B5%7D%3D-1%5C%5D)
![\[=>m=\frac{-5}{3}\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%3D%5Cfrac%7B-5%7D%7B3%7D%5C%5D)
So the equation of the required line becomes ![\[y=\frac{-5}{3}x+c\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2Bc%5C%5D)
This line passes through the point (15.-5)
![\[-5=\frac{-5}{3}*15+c\]](https://tex.z-dn.net/?f=%5C%5B-5%3D%5Cfrac%7B-5%7D%7B3%7D%2A15%2Bc%5C%5D)
![\[=>c=20\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Ec%3D20%5C%5D)
So the equation of the required line is ![\[y=\frac{-5}{3}x+20\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2B20%5C%5D)
Among the given options, option 4 is the correct one.
40,600x10=406,000 lol dude its easy
Y + 5 = 0
y >= -5
Therefore, you would choose the first answer.
One method is to round 997 up to 1000, multiply by 8, and then subtract 8 times 3. This would give you the solution of 7976.
Another method (Which I personally wouldn't use) is to recursively double 997. This is more difficult, although effective. After you double 997, double the resulting number, and then double the resulting number from that, you have the solution. This is because 2^3 is 8.