Answer:
4.19
Step-by-step explanation:
If rounded to the nearest dime 4.20
nice
Answer: She would need 206 paper cups.
Step-by-step explanation: First of all, Monica has a 10-gallon container full of lemonade and this translates into 37850 cubic centimetres volume of lemonade. The conversion rate has been provided as one gallon equals 3785 cubic centimetres, therefore ten gallons would be 3785 times ten which gives you 37,850 cubic centimetres of lemonade.
Each cone shaped paper cup has a diameter measuring 8 centimetres and 11 centimetres in height. The radius of the cone shaped cup therefore is 4 centimetres (radius equals diameter divided by two). The volume of each cup therefore is given as;
Volume of a cone = (πr²h)/3
Volume of a cone = (3.14 * 4² * 11)/3
Volume of a cone = 552.64/3
Volume of a cone = 184.2
If each cone could hold 184 cubic centimetres of lemonade, then the entire ten gallons would require the following number of cone shaped cups;
Number of cups = Total volume/Volume of a cup
Number of cups = 37850/184.2
Number of cups = 205.48
Rounded to the nearest whole number, this becomes
Number of cups ≈ 206
Therefore Monica would need 206 cone shaped paper cups to empty the entire 10 gallons of lemonade.
1a) False. A square is never a trapezoid. A trapezoid has only one pair of parallel sides while the other set of opposite sides are not parallel. Contrast this with a square which has 2 pairs of parallel opposite sides.
1b) False. A rhombus is only a rectangle when the figure is also a square. A square is essentially a rhombus and a rectangle at the same time. If you had a Venn Diagram, then the circle region "rectangle" and the circle region "rhombus" overlap to form the region for "square". If the statement said "sometimes" instead of "always", then the statement would be true.
1c) False. Any rhombus is a parallelogram. This can be proven by dividing up the rhombus into triangles, and then proving the triangles to be congruent (using SSS), then you use CPCTC to show that the alternate interior angles are congruent. Finally, this would lead to the pairs of opposite sides being parallel through the converse of the alternate interior angle theorem. Changing the "never" to "always" will make the original statement to be true. Keep in mind that not all parallelograms are a rhombus.
I believe you would just divide 134 by 8
134/8 = 16.75
That means you would earn $16.75 per hour.
Using the Sine rule,

![\begin{gathered} \text{Let A = 14m,} \\ Substituting the variables into the formula,Where the length of the wires are, AP = xm and BP = ym[tex]\begin{gathered} \frac{\sin80^0}{14}=\frac{\sin40^0}{x} \\ \text{Crossmultiply,} \\ x\times\sin 80^0=14\times\sin 40^0 \\ Divide\text{ both sides by }\sin 80^0 \\ x=\frac{14\sin40^0}{\sin80^0} \\ x=9.14m \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BLet%20A%20%3D%2014m%2C%7D%20%5C%5C%20Substituting%20the%20variables%20into%20the%20formula%2C%3Cp%3EWhere%20the%20length%20of%20the%20wires%20are%2C%20AP%20%3D%20xm%20and%20BP%20%3D%20ym%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%5Csin80%5E0%7D%7B14%7D%3D%5Cfrac%7B%5Csin40%5E0%7D%7Bx%7D%20%5C%5C%20%5Ctext%7BCrossmultiply%2C%7D%20%5C%5C%20x%5Ctimes%5Csin%2080%5E0%3D14%5Ctimes%5Csin%2040%5E0%20%5C%5C%20Divide%5Ctext%7B%20both%20sides%20by%20%7D%5Csin%2080%5E0%20%5C%5C%20x%3D%5Cfrac%7B14%5Csin40%5E0%7D%7B%5Csin80%5E0%7D%20%5C%5C%20x%3D9.14m%20%5Cend%7Bgathered%7D)
Hence, the length of wire AP (x) is 9.14m.
For wire BP (y)m,
Sum of angles in a triangle is 180 degrees,


Using the side rule to find the length of wire BP,

Hence, the length of wire BP (y) is 12.31m
Therefore, the length of the wires are (9.14m and 12.31m).