Answer:
Step-by-step explanation:
A1. C = 104°, b = 16, c = 25
Law of Sines: B = arcsin[b·sinC/c} ≅ 38.4°
A = 180-C-B = 37.6°
Law of Sines: a = c·sinA/sinC ≅ 15.7
A2. B = 56°, b = 17, c = 14
Law of Sines: C = arcsin[c·sinB/b] ≅43.1°
A = 180-B-C = 80.9°
Law of Sines: a = b·sinA/sinB ≅ 20.2
B1. B = 116°, a = 11, c = 15
Law of Cosines: b = √(a² + c² - 2ac·cosB) = 22.2
A = arccos{(b²+c²-a²)/(2bc) ≅26.5°
C = 180-A-B = 37.5°
B2. a=18, b=29, c=30
Law of Cosines: A = arccos{(b²+c²-a²)/(2bc) ≅ 35.5°
Law of Cosines: B = arccos[(a²+c²-b²)/(2ac) = 69.2°
C = 180-A-B = 75.3°
tan2x*cotx - 3 = 0
We know that: tan2x = sin2x/cos2x and cotx = cosx/sinx
==> sin2x/cos2x *cosx/sinx = 3
Now we know that sin2x = 2sinx*cosx
==> 2sinxcosx/cos2x * cosx/sinx = 3
Reduce sinx:
==> 2cos^2 x/ cos2x = 3
Now we know that cos2x = 2cos^2 x-1
==> 2cos^2 x/(2cos^2 x -1) = 3
==> 2cos^2 x = 3(2cos^2 x -1)
==> 2cos^2 x = 6cos^2 x - 3
==> -4cos^2 x= -3
==> 4cos^2 x = 3
==> cos^2 x = 3/4
==> cosx = +-sqrt3/ 2
<span>==> x = pi/6, 5pi/6, 7pi/6, and 11pi/6</span>
See the attachment..........
The commutative property of addition means we can add two integers in any order. So yes, It would still apply to two negative integers (for example, -2 + -3 and -3 + -2 both equal five)
The answer is would have to be b.