Answer:
$1.98
Step-by-step explanation:
6%=0.06
33*0.06=1.98
Answer:
The answer is 829 because you are adding
Step-by-step explanation:
Problem 5
Apply the Law of Sines
s/sin(S) = r/sin(R)
s/sin(78) = 10/sin(48)
s = sin(78)*10/sin(48)
s = 13.162274
<h3>Answer: 13.162274 approximately</h3>
=============================================================
Problem 6
Use the Law of Sines here as well.
x/sin(X) = y/sin(Y)
x/sin(53) = 6/sin(22)
x = sin(53)*6/sin(22)
x = 12.791588
<h3>Answer: 12.791588 approximately</h3>
Tom bought 768 pounds of candy because 333 + 435 = 768
A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>
En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)
En consecuencia, obtenemos las siguientes proporciones:
AP'/AP'' = MN/BC = 1/2 (1)
Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:


A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
Para aprender sobre triángulos semejantes: brainly.com/question/21730013
#SPJ1