Answer:
g and g
Step-by-step explanation:
just did
It is just the multiplication of vectors. We'll multiply corresponding pairs together. The general formula for the pairs of (

;

) and (

;

) is

*

+

*

= (-6)*(-3)+4*6=18+24=42
Part A
Answer: The common ratio is -2
-----------------------------------
Explanation:
To get the common ratio r, we divide any term by the previous one
One example:
r = common ratio
r = (second term)/(first term)
r = (-2)/(1)
r = -2
Another example:
r = common ratio
r = (third term)/(second term)
r = (4)/(-2)
r = -2
and we get the same common ratio every time
Side Note: each term is multiplied by -2 to get the next term
============================================================
Part B
Answer:
The rule for the sequence is
a(n) = (-2)^(n-1)
where n starts at n = 1
-----------------------------------
Explanation:
Recall that any geometric sequence has the nth term
a(n) = a*(r)^(n-1)
where the 'a' on the right side is the first term and r is the common ratio
The first term given to use is a = 1 and the common ratio found in part A above was r = -2
So,
a(n) = a*(r)^(n-1)
a(n) = 1*(-2)^(n-1)
a(n) = (-2)^(n-1)
============================================================
Part C
Answer: The next three terms are 16, -32, 64
-----------------------------------
Explanation:
We can simply multiply each previous term by -2 to get the next term. Do this three times to generate the next three terms
-8*(-2) = 16
16*(-2) = -32
-32*(-2) = 64
showing that the next three terms are 16, -32, and 64
An alternative is to use the formula found in part B
Plug in n = 5 to find the fifth term
a(n) = (-2)^(n-1)
a(5) = (-2)^(5-1)
a(5) = (-2)^(4)
a(5) = 16 .... which matches with what we got earlier
Then plug in n = 6
a(n) = (-2)^(n-1)
a(6) = (-2)^(6-1)
a(6) = (-2)^(5)
a(6) = -32 .... which matches with what we got earlier
Then plug in n = 7
a(n) = (-2)^(n-1)
a(7) = (-2)^(7-1)
a(7) = (-2)^(6)
a(7) = 64 .... which matches with what we got earlier
while the second method takes a bit more work, its handy for when you want to find terms beyond the given sequence (eg: the 28th term)
I think it is acute because below 90 is acute above 90 is obtuse and exactly 90 is right
Ok so you find the area of the yellow and the red and the area of the yellow you subtract it with the area aid the red that should give you the correct answer